一、工业相机参数
        1、分辨率

                相机每次采集图像的像素点数,也是指这个相机总共有多少个感光晶片。在采集图像时,相机的分辨率对检测精度有很大的影响,在对同样大的视场成像时,分辨率越高,对细节的展示越明显。

        相机像素 = 水平分辨率 * 垂直分辨率

        芯片尺寸 = 水平像素尺寸 * 水平分辨率

        感光芯片尺寸=分辨率∗像元尺寸

        分辨率( Pixel ) = 相机视野( mm ) / 像素精度( mm / Pixel )

        2、精度

                精度指一个像素表示实际物体的大小,用(um*um)/pixel表示。注意,像元尺寸并不等于精度,像元尺寸是相机机械构造时固定的,而精度与相机视野有关,是变化的。精度值越小,精度越高。

          单个像素对应的大小 = 视野宽 / 宽度分辨率 = 视野高 / 高度分辨率

          镜头倍率 = 芯片尺寸 / 实际所需视野

          像素精度 = 像素尺寸 / 镜头倍率

          像素精度 = 相机视野 / 相机分辨率

          像素尺寸 = 产品短边尺寸/所选相机短边像素数

        3、帧率/行频

                帧率:fps帧率,对应面阵相机,表示每秒能够拍摄的图片张数。

                行频:16kHz行频,对应线阵相机,表示每秒能够扫描的行数。最大图像分辨率为分辨率*行频(例2048x16k);

                帧率和行频体现相机的最大工作效率,与曝光共同决定成像图片的明暗,帧率和行频很高且曝光低,则图片很暗;帧率和行频很低且曝光高,则图片很亮。

        4、像元尺寸

                像元尺寸指芯片像元阵列上每个像元的实际物理尺寸,例如3.75umx3.75um 等。像元尺寸从某种程度上反映了芯片的对光的响应能力,像元尺寸越大,能够接收到的光子数量越多,在同样的光照条件和曝光时间内产生的电荷数量越多。对于弱光成像而言,像元尺寸是芯片灵敏度的一种表征。像元尺寸和像元数(分辨率)共同决定了相机靶面的大小,通常工业相机像元尺寸为2μm~14μm。

        像元尺寸(宽) = 传感器尺寸(宽) / 分辨率(宽)

        像元尺寸(高) = 传感器尺寸(高) / 分辨率(高)

        5、曝光时间

                曝光时间是为了将光投射到照相感光材料的感光面上,快门所要打开的时间。曝光时间和实际的帧率成反比,也就是曝光时间越长,实际的采集帧率会越低,一般为3um-10ms。

        曝光时间 = 像元尺寸 / 像的运动速度 = 像素精度 / 物体的运动速度

        放大倍率 = CCD感光尺寸 / 视场FOV = 焦距 / 工作距离

相机的飞拍曝光数值计算 

案例1:物体的运动速度是150mm/s,沿着芯片的水平方向运动,相机是1/2芯片(6.4mm*4.8mm),视场水平方向长度是20mm,像元尺寸是4.65um,计算成像时不产生拖影的曝光时间。

        首先计算出像的运动速度

        放大倍数 = CCD感光尺寸 / 视场FOV  = 6.4mm / 20mm = 0.32,

        像的运动速度 = 放大倍率 * 物体的运动速度 = 0.32 * 150mm/s = 48mm/s,

        曝光时间 = 像元尺寸 / 像的运动速度 = 4.65um / 48mm/s = 0.000097s = 97us,

        最后曝光时间设置为100us即可。

案例2:玻璃转盘设备,使用的相机是GMAX3265(6500万相机,相机的像元尺寸是3.2μm*3.2μm),0.52倍率的圆心镜头,转盘3600脉冲转一圈,软件设定的运行速度180脉冲/s,玻璃转盘的盘子直径500mm

        计算公式1:

        转盘转一圈的时间 = 一圈的脉冲 / 运行速度 = 3600 / 180 = 20秒;

        物体的运动速度 = 转盘的盘子直径 * 3.14 / 转盘转一圈的时间 = 500 * 3.14 / 20 = 78.5mm/s

        像的运动速度 = 放大倍率 * 物体的运动速度 = 78.5 * 0.52 = 40.82mm/s

        曝光时间 = 像元尺寸 / 像的运动速度 = 3.2 / 40.82 = 78.39us

        最后曝光时间设置为80us

        计算公式2:

        转盘转一圈的时间 = 一圈的脉冲 / 运行速度 = 3600 / 180 = 20秒;

        物体的运动速度 = 转盘的盘子直径 * 3.14 / 转盘转一圈的时间 = 500 * 3.14 / 20 = 78.5mm/s

        像素精度 = 像元尺寸 / 镜头的倍率 = 3.2 / 0.52 = 6.153846um

        曝光时间 = 像素精度 / 物体的运动速度 = 6.153846 / 78.5 = 78.39us

        6、靶面尺寸(传感器尺寸)               

                图像传感器的感光部分的大小,通常指的是图像传感器的对角线长度,在同样镜头情况下,靶面越大,视场越大,靶面越小,视场越小。传感器(CCD/CMOS)尺寸的表示方法大惑不解,因为像1/1.8英寸、2/3英寸之类的尺寸,既不是任何一条边的尺寸,也不是其对角线尺寸,看着这样的尺寸,往往难以形成具体尺寸大小的概念。

传感器类型宽度(mm)高度(mm)对角线(mm)
1/3''4.8003.6006.000
1/2.5''5.7604.2907.182
1'12.7009.60016.000
2/3''8.8006.60011.000
1/2''6.4004.8008.000
4/3''18.80013.50022.500
1/1.8''7.2005.4009.000
1.1''12.00012.00017.000
1/4''3.2002.4004.000

                CCD尺寸一般用英寸来表示,靶面尺寸就是CCD尺寸

        靶面尺寸  =  对角线尺寸

        靶面面积  =  传感器宽度 * 传感器高度

二、镜头参数
        1、焦距

                 与光轴平行的光线射入凸透镜时,理想的镜头应该是所有的光线聚集在一点后,再以锥状扩散开来,这个聚集所有光线的点叫做焦点。对于单个透镜来说,焦距是指从光心到焦点的距离,如图一;对于多个透镜组成的镜头组来说,焦距是指像方主平面到焦点的距离,如图二。一般情况下,焦距越大, 工作距离越大,视角越小;焦距越小,工作距离越小,视角越大。

       

        焦距  = (工作距离 * 相机传感器短边尺寸)/ 物体宽度

或    焦距  =  工作距离 * 放大倍率

        

        焦距、像距、物距之间的关系:

                (1 / 物距)+ (1 / 像距)= (1 / 焦距)

         2、光圈

                光圈是一个用来控制光线透过镜头进入机身内感光面光量的装置,在拍摄高速运动物体时,由于曝光时间短,需要使用大光圈。

                光圈大小一般用F表示,以镜头焦距f和通光孔径直径D的比值来衡量,当光圈物理孔径不变时,镜头中心与感光器件距离越远,F值越大,光圈越小;反之,F值越小,光圈越大。

                一般通过调整通光孔径大小来调节光圈,完整的光圈数值系列如下:F1,F1.4,F2,F2.8,F4,F5.6,F8,F11,F16,F22,F32,F44,F64。

       光圈系数F = 焦距f / 通光孔径D         F = \frac{f}{D}

        3、分辨率

                图像系统可以测到的受检验物体上的最小可分辨特征尺寸,多数情况下,视野越小,分辨率越好

        4、工作距离

                工作距离指的是镜头的最下端到景物之间的距离。一般的镜头是可以看到无限远的,也就是说是没有上限的。镜头上有两个刻度的调节圈分别是调节光圈和调焦圈,在调节圈上标有的刻度表示此时镜头的工作距离。

         5、视场(FOV)

                视场也叫视野范围,视野指的是镜头能看到的最大范围,也就是镜头所能覆盖的有效工作区域。

视野 = 相机感光芯片尺寸/光学放大倍率

例:使用巴斯勒相机ACA2440-20GM,相机的感光芯片尺寸为8.4mm*7.1mm,使用0.5倍镜头,此时的视野为:(8.4/0.5) *(7.1/0.5) = 16.8mm * 14.2 mm

FA镜头(对焦):芯片尺寸长边 * 工作距离 = 视野长边 * 焦距

                              芯片尺寸短边 * 工作距离 = 视野短边 * 焦距

例:相机芯片8.4mm * 7.1mm,使用25mm镜头,安装高度为400mm, 

视野计算为:8.4 * 400 = 25 * 视野长边  => 视野长边 = 134.4mm

                     7.1 * 400 = 25 * 视野短边 => 视野短边 = 113.6mm

参考链接:面阵相机靶面详解and镜头选择andFA镜头视野计算-CSDN博客

                  关于相机的一些参数计算(靶面、视野等)_fov指的是长边还是短边-CSDN博客

        6、景深(DOF)

                在最小工作距离到最大工作距离之间的范围称为景深(纵向的范围),景深内的物体都可以清晰成像。景深一般可以通过光圈调节,光圈越小,景深越大。

         能清晰成像的最近物平面称为近景平面,它与对准平面的距离称为前景深\DeltaL1。

\Delta L1 = \frac{F\delta L^{2}}{f^{2}+F\delta L}

         能清晰成像的最远物平面称为远景平面,它与对准平面的距离称为后景深\DeltaL2。

\Delta L2 = \frac{F\delta L^{2}}{f^{2}-F\delta L}

        景深=前景深+后景深:

         \Delta L = \Delta L1 + \Delta L2 = \frac{2f^{2}2F\delta L^{2}}{f^{4}-F^{2}\delta^{2} L^{2}}

        其中:\delta :容许弥散圆直径,f:镜头焦距,F:镜头的拍摄光圈值,L:对焦距离

        光圈,镜头焦距、拍摄距离对景深的影响:

        1)、镜头光圈:光圈越大,景深越小;光圈越小,景深越大;

        2)、镜头焦距:镜头焦距越长,景深越小;距离越短,景深越大;

        3)、拍摄距离:距离越远,景深越大;距离越近,景深越小 

        7、视角

                 视角即视线的角度,也就是镜头能看多"宽"。焦距越小,视角越大,最小工作距离越短,视野越大。

镜头选型实例:

        已知客户观察范围为30mm*30mm,工作距离为100mm,CCD尺寸为1/3',那么需要多少焦距的镜头

        计算方法:

                1/3'=3.6mm(垂直) 芯片垂直方向的大小

                f=(100*3.6)/30 

        8、镜头各参数间的相互影响关系

           (1)、焦距大小的影响情况:焦距越小,景深越大;焦距越小,畸变越大;焦距越小,渐晕现象越严重,使像差边缘的照度降低

           (2)、光圈大小的影响情况:光圈越大,图像亮度越高;光圈越大,景深越小;光圈越大,分辨率越高

           (3)、像场中央与边缘:一般像场中心较边缘分辨率高;一般像场中心较边缘光场照度高

           (4)、光波长度的影响:在相同的摄像头及镜头参数条件下,照明光源的光波波长越短,得到的图像的分辨力越高,所以在需要精密尺寸及位置测量的视觉系统中,尽量采用短波长的单色光作为照明光源,对提高系统精密有很大的作用。

参考:工业相机与镜头选型方法(含实例)_工业相机选型-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/web/92629.shtml
繁体地址,请注明出处:http://hk.pswp.cn/web/92629.shtml
英文地址,请注明出处:http://en.pswp.cn/web/92629.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通信中间件 Fast DDS(一) :编译、安装和测试

目录 1.简介 2.Windows编译、安装和测试 2.1.编译环境准备 2.2.编译安装 2.2.1.安装FastCDR 2.2.2.安装Foonathan Memory 2.2.3.安装FastDDS 2.3.验证安装 3.Linux编译、安装和测试 3.1.编译环境准备 3.2.编译安装 3.2.1.安装FastCDR 3.2.2.安装Foonathan M…

NI USRP X410 无线电上的雷达目标仿真

此示例展示如何在 NI™ USRP™ 无线电的 FPGA 上部署雷达目标仿真算法。 介绍 在本例中,您将从 Simulink 模型入手,该模型可模拟最多四个雷达目标响应。您将按照分步指南,在 Simulink 中从该模型生成比特流,并使用生成的 MATLAB 主…

PyTorch 深度学习实战教程-番外篇04:卷积层详解与实战指南

标签:# 深度学习 #人工智能 #神经网络 #PyTorch #卷积神经网络 相关文章: 《Pytorch深度学习框架实战教程01》 《Pytorch深度学习框架实战教程02:开发环境部署》 《Pytorch深度学习框架实战教程03:Tensor 的创建、属性、操作与…

LeetCode 面试经典 150_数组/字符串_分发糖果(15_135_C++_困难)(贪心算法)

LeetCode 面试经典 150_数组/字符串_分发糖果(15_135_C_困难)题目描述:输入输出样例:题解:解题思路:思路一(贪心算法):代码实现代码实现(思路一(贪…

配置timer控制 IO的输出(STC8)

使用STC8的Timer控制IO输出 STC8系列单片机具有多个定时器,可以用于精确控制IO口的输出状态。以下是使用Timer0和Timer1控制IO输出的方法。 初始化Timer0 配置Timer0为16位自动重装模式,用于周期性控制IO输出: /************************ 定时…

【Python练习】086. 编写一个函数,实现简单的DHCP服务器功能

086. 编写一个函数,实现简单的DHCP服务器功能 086. 编写一个函数,实现简单的DHCP服务器功能 安装依赖库 示例代码 代码说明 示例输出 注意事项 扩展功能 DHCP服务器功能实现方法 依赖库安装 基本功能实现 功能说明 运行方法 注意事项 扩展功能 086. 编写一个函数,实现简单的…

生产环境Tomcat运行一段时间后,如何测试其性能是否满足后续使用

要测试生产环境中已运行一段时间的Tomcat性能是否满足后续使用需求,需从基础监控、负载压力测试、配置合理性校验、稳定性验证等多维度入手,结合工具和实际业务场景定位瓶颈,确保其能应对未来可能的流量增长。以下是具体方法和步骤&#xff1…

Qt中的设计模式:经典的MVC,MVP和MVVM

Qt中的设计模式:经典的MVC,MVP和MVVM 前言 ​ 笔者这里最近正在研究经典的三大 Model/View 框架,不得不说,我先前的确写过Qt在这里的体现,但是,笔者认为之前的文章中,我只是机械的memcpy的Qt的…

Windows浮动ip怎么配置

Windows浮动IP怎么配置,达到IP漂移的效果,方法肯定是有的,这里我推荐一款好用的高可用Vip漂移软件PanguVip,我们先看下最终达到的效果图,如下所示PanguVip软件免费下载百度网盘为您提供文件的网络备份、同步和分享服务…

[langchain] Sync streaming vs Async Streaming

我不太清楚langchain中的sync stream 和 async steam有什么关系和区别sync stream from langchain.chat_models import init_chat_model from langchain_deepseek.chat_models import ChatDeepSeek import dotenv dotenv.load_dotenv()messages [ ("system", &quo…

nginx下lua的实现机制、Lua错误处理、面向对象

nginx下lua的实现机制 nginxlua概述 nginx:功能由模块提供。 http模块、events模块,mail模块。 处理http请求的时候,可以利用模块做一些功能:eg:登录校验,js合并,数据库访问,鉴权。 …

Axure基于中继器实现的组件库(导航菜单、动态表格)

摘要 本文将为您详细介绍基于 Axure 的中继器组件库中的 9 个独特组件,这些组件不仅能够极大地提升您的原型设计效率,还能为您的项目增添令人惊叹的交互效果和视觉呈现。 引言 在当今快速发展的数字产品设计领域,原型设计工具的革新不断推动着…

Kafka 生产者与消费者分区策略全解析:从原理到实践

一、生产者分区策略1.1 分区好处(1)便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。&#xff0…

高频面试点:深入理解 TCP 三次握手与四次挥手

在网络通信的世界里,TCP(Transmission Control Protocol,传输控制协议)是确保数据可靠传输的基石。其中,三次握手建立连接、四次挥手断开连接的过程,更是 Java 秋招面试中的高频考点。今天,我们就深入剖析这两个关键过程,结合原理、代码示例与面试真题,帮你吃透知识点…

k8s-nfs实现创建sc的两种方式

法一:基于 官方 NFS CSI 插件 法二:基于 nfs-subdir-external-provisioner 法一 官方 NFS CSI 插件 大致步骤# 安装 NFS sudo apt update sudo apt install -y nfs-kernel-server # 创建共享目录 sudo mkdir -p /data/nfs sudo chmod 777 /data/nfs # 配…

n8n 入门指南:更适合跨境出海搞钱的AI智能体

如果你最近刷到 AI 圈的分享应该会发现——n8n 又火起来了。其实 n8n 早在 2020 年左右就被程序员玩过一波,当时很多人拿它做网站自动发邮件、消息转发之类的“流程自动化”。但那时候 AI 还没这么卷,大家也没觉得多有用。n8n为什么最近又翻红&#xff1…

【数据分享】各省农业土地流转率(2010-2023)

数据介绍土地流转是推动农业规模化、现代化发展的关键机制。为助力相关研究,现分享一份覆盖全国30个省级行政区、时间跨度为2010-2023年的农业土地流转率面板数据集。本数据直接提取自权威统计年报,具有较高的参考价值。一、数据概览覆盖范围&#xff1a…

音视频时间戳获取与同步原理详解

引言:为什么音视频同步如此重要? 在音视频技术领域,"同步"是决定用户体验的核心要素。想象一下观看电影时画面与声音错位0.5秒的场景:角色说话时嘴唇动作与声音不匹配,爆炸场景的视觉冲击先于音效到达——这…

Day38--动态规划--322. 零钱兑换,279. 完全平方数,139. 单词拆分,56. 携带矿石资源(卡码网),背包问题总结

Day38–动态规划–322. 零钱兑换,279. 完全平方数,139. 单词拆分,56. 携带矿石资源(卡码网),背包问题总结 今天的是几道经典的“完全背包”题目。前两道题目,要区分求的是“价值”,还…

应用层Http协议(1)

应用层Http协议(1) 在互联网世界中,HTTP(HyperText Transfer Protocol,超文本传输协议)是一个至关重要的协议。它定义了客户端(如浏览器)与服务器之间如何通信,以交换或传…