文章目录

  • 前言
  • 什么是容器适配器?
  • 观察库中的源码
  • 那么该如何使用容器适配器呢?
    • deque的简单介绍(了解)
      • deque的原理介绍
      • deque的优缺
      • 为什么选择deque作为stack和queue的底层默认容器?(重点)
  • 利用容器适配器实现我们自己的栈和队列!
    • stack.h
    • queue.h

前言

本章我们会结合C++标准库重点讲解容器适配器以及如何用容器适配器快速实现栈和队列。

什么是容器适配器?

首先我们看一下电源适配器,它可以将只适用于本国插头的插座适配出适用于他国不同频率插头的插座。

我们要讲的容器适配器也类似
容器适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口

在这里插入图片描述

观察库中的源码

  • 观察库中栈和队列的模板,我们发现都存在Class Container=其他容器<T>,这就是利用了其他容器去实现本容器的操作即:容器适配器。
  • 虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stackqueue默认使用deque,比如
    在这里插入图片描述
    在这里插入图片描述

那么该如何使用容器适配器呢?

我们可以先去看一下库中栈和队列的源码

#include<deque>
namespace bite
{
template<class T, class Con = deque<T>>
//template<class T, class Con = vector<T>>
//template<class T, class Con = list<T>>
class stack
{
public:stack() {}void push(const T& x) {_c.push_back(x);}void pop() {_c.pop_back();}T& top() {return _c.back();}const T& top()const {return _c.back();}size_t size()const {return _c.size();}bool empty()const {return _c.empty();}
private:Con _c;
};
}#include<deque>
#include <list>
namespace bite
{
template<class T, class Con = deque<T>>
//template<class T, class Con = list<T>>
class queue
{
public:queue() {}void push(const T& x) {_c.push_back(x);}void pop() {_c.pop_front();}T& back() {return _c.back();}const T& back()const {return _c.back();}T& front() {return _c.front();}const T& front()const {return _c.front();}size_t size()const {return _c.size();}bool empty()const {return _c.empty();}
private:Con _c;
};
}
  • 可以发现库中的栈和队列并没有自己原生实现各类接口,而是去调用其他容器的接口去快速实现本接口功能。
  • 我们还发现了这里的其他容器默认都是deque,这是为什么呢?

想知道这些我们要先了解一下deque

deque的简单介绍(了解)

deque的原理介绍

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。
在这里插入图片描述
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示:
在这里插入图片描述
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:
在这里插入图片描述
那deque是如何借助其迭代器维护其假想连续的结构呢?
在这里插入图片描述

deque的优缺

  • vector比较,deque优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是比vector高的。
  • 与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段
  • 但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stackqueue的底层数据结构。

为什么选择deque作为stack和queue的底层默认容器?(重点)

这是与本文最相关的一点,上面的介绍只做了解。

  • stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;

  • queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。

但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

  1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
  2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。结合了deque的优点,而完美的避开了其缺陷。

利用容器适配器实现我们自己的栈和队列!

首先由于模板的使用不能做声明和定义分离
其次记得包一下命名空间与库中的栈和队列做区分

stack.h

#pragma once
#include<vector>
#include<deque>
#include<list>
namespace dhb
{//利用容器适配器快速实现栈template<class T, class Container = deque<T>>class stack{public:void push(const T& x){return _con.push_back(x);}void pop(){return _con.pop_back();}bool empty(){return _con.empty();}size_t size(){return _con.size();}T& top(){return _con.back();}const T& top()const{return _con.back();}private:Container _con;};
}

queue.h

#pragma once
#include<vector>
#include<deque>
#include<list>
namespace dhb
{template<class T,class Container =deque<int>>class queue{public:void push(const T& x){return _con.push_back(x);}void pop(){return _con.pop_front();}bool empty(){return _con.empty();}T& front(){return _con.front();}T& back(){return _con.back();}const T& front()const{return _con.front();}const T& back()const{return _con.back();}size_t size(){return _con.size();}private:Container _con;};
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/web/91410.shtml
繁体地址,请注明出处:http://hk.pswp.cn/web/91410.shtml
英文地址,请注明出处:http://en.pswp.cn/web/91410.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【因子动物园巡礼】第12章:机器学习在因子投资中的应用(中文翻译)

【因子动物园巡礼】第12章&#xff1a;机器学习在因子投资中的应用&#xff08;中文翻译&#xff09;第12章 因子投资中的机器学习12.1 量化金融中的人工智能12.2 量化因子投资的AI化组件&#xff1a;解剖学视角12.2.1 数据源拓展与预处理12.2.2 因子研究12.2.3 因子模型12.2.4…

【Golang】用官方rate包构造简单IP限流器

文章目录使用 Go 实现基于 IP 地址的限流机制什么是 IP 限流&#xff1f;基于 rate.Limiter 实现 IP 限流1. 设计思路2. 代码实现3. 限流中间件4. 在 Gin 中使用中间件代码解释使用 Go 实现基于 IP 地址的限流机制 在高流量的服务中&#xff0c;限流是一个至关重要的环节。它不…

力扣 Pandas 挑战(6)---数据合并

本文围绕力扣的Pandas简单题集&#xff0c;解析如何用Pandas完成基础数据处理任务&#xff0c;适合Pandas初学者学习。题目1&#xff1a;1050. 合作过至少三次的演员和导演题目描述&#xff1a;ActorDirector 表&#xff1a;---------------------- | Column Name | Type | …

随笔之TDengine基准测试示例

文章目录一、基本信息二、基准测试策略三、基准测试过程1. 模拟高并发写入场景2. 模拟并发查询场景四、基准测试结论一、基本信息 TDengine 版本&#xff1a;3.3.6.13&#xff08;目前最新版本&#xff09;服务器配置&#xff1a;16核CPU&#xff0c;32GB内存&#xff0c;高IO…

【IQA技术专题】DISTS代码讲解

本文是对DISTS图像质量评价指标的代码解读&#xff0c;原文解读请看DISTS文章讲解。 本文的代码来源于IQA-Pytorch工程。 1、原文概要 以前的一些IQA方法对于捕捉纹理上的感知一致性有所欠缺&#xff0c;鲁棒性不足。基于此&#xff0c;作者开发了一个能够在图像结构和图像纹…

2024年SEVC SCI2区,一致性虚拟领航者跟踪群集算法GDRRT*-PSO+多无人机路径规划,深度解析+性能实测

目录1.摘要2.算法背景3.GDRRT*-PSO与虚拟领航者跟踪算法4.结果展示5.参考文献6.算法辅导应用定制读者交流1.摘要 随着无人机技术的快速发展及其卓越的运动和机动性能&#xff0c;无人机在社会和军事等诸多领域得到了广泛应用。多无人机协同作业&#xff0c;能够显著提升任务执…

链特异性文库是什么?为什么它在转录组测序中越来越重要?

链特异性文库是什么&#xff1f;为什么它在转录组测序中越来越重要&#xff1f; 在现代分子生物学研究中&#xff0c;RNA测序&#xff08;RNA-seq&#xff09; 是一种广泛应用的技术&#xff0c;用于分析基因在不同条件下的表达情况。而在RNA-seq的众多技术细节中&#xff0c;有…

ClickHouse vs PostgreSQL:数据分析领域的王者之争,谁更胜一筹?

文章概要 作为一名数据架构师&#xff0c;我经常被问到一个问题&#xff1a;在众多数据库选择中&#xff0c;ClickHouse和PostgreSQL哪一个更适合我的项目&#xff1f;本文将深入探讨这两种数据库系统的核心差异、性能对比、适用场景以及各自的优缺点&#xff0c;帮助您在技术选…

面向对象系统的单元测试层次

面向对象系统的单元测试层次面向对象&#xff08;Object-Oriented, OO&#xff09;编程范式引入了封装、继承和多态等核心概念&#xff0c;这使得传统的、基于函数的单元测试方法不再充分。面向对象系统的单元测试必须适应其独特的结构和行为特性&#xff0c;从单一方法扩展到类…

如何用USRP捕获手机信号波形(上)系统及知识准备

目录&#xff1a; 如何用USRP捕获手机信号波形&#xff08;上&#xff09;系统及知识准备 如何用USRP捕获手机信号波形&#xff08;中&#xff09;手机/基站通信 如何用USRP捕获手机信号波形&#xff08;下&#xff09;协议分析 一、手机通信参数获取 首先用Cellular-z网络…

C语言-数组:数组(定义、初始化、元素的访问、遍历)内存和内存地址、数组的查找算法和排序算法;

本章概述思维导图&#xff1a;C语言数组在C语言中&#xff0c;数组是一种固定大小的、相同类型元素的有序集合&#xff0c;通过索引&#xff08;下标&#xff09;访问。数组数组&#xff1a;是一种容器&#xff0c;可以用来存储同种数据类型的多个值&#xff1b;数组特点&#…

河南萌新联赛2025第(二)场:河南农业大学(补题)

文章目录前言A.约数个数和整除分块(相当于约数求和)相关例题&#xff1a;取模B.异或期望的秘密二进制的规律相关例题累加器小蓝的二进制询问乘法逆元1. 概念2.基本定义3.费马小定理1.定理内容2.重要推论D.开罗尔网络的备用连接方案E.咕咕嘎嘎!!!(easy)I.猜数游戏(easy)K.打瓦M.…

常见中间件漏洞

一、TomcatTomcat put方法任意文件写入漏洞环境搭建&#xff0c;启动时端口被占用就改yml配置文件&#xff0c;改成8081端口。(我这里是8080)cd vulhub-master/tomcat/CVE-2017-12615 docker-compose up -d 去抓包&#xff0c;改成put提交。下面的内容是用哥斯拉生成的木马文件…

27.(vue3.x+vite)以pinia为中心的开发模板(监听watch)

效果截图 代码实现: HelloWorld.vue <template><div style="padding: 20px">介绍:<br />1:使用统一的 watch 来监听store的值。<br

Jenkins 详解

Jenkins 是一个开源的持续集成和持续交付(CI/CD)工具&#xff0c;用于自动化软件开发过程中的构建、测试和部署阶段。以下是关于 Jenkins 的详细介绍&#xff1a; 1. Jenkins 核心概念 1.1 持续集成(CI) 开发人员频繁地将代码变更提交到共享仓库每次提交都会触发自动构建和测试…

动态配置实现过程

查看DCCValueBeanFactory类的完整实现&#xff0c;了解动态配置的实现过程 动态配置实现过程 1. 自定义注解 使用DCCValue注解标记需要动态配置的字段&#xff0c;格式为key:defaultValue&#xff1a; DCCValue("downgradeSwitch:0") private String downgradeSw…

【大模型理论篇】跨语言AdaCOT

参考&#xff1a;AdaCoT: Rethinking Cross-Lingual Factual Reasoning throughAdaptive Chain-of-ThoughtAdaCoT&#xff08;Adaptive Chain-of-Thought&#xff0c;自适应思维链&#xff09;是一项提升大型语言模型&#xff08;LLMs&#xff09;跨语言事实推理能力的新框架。…

vue3项目搭建

前一段时间招聘前端开发,发现好多开发连基本的创建项目都不会,这里总结一下 在Vue 3中,使用Webpack和Vite创建的项目文件结构及语言(JS/TS)的选择有以下主要区别: 1. 创建方式与文件结构差异 方式一、Webpack(Vue CLI) 创建命令: vue create project-name 典型文件结构…

企业签名的多种形式

企业签名有多种形式&#xff0c;可分为企业签名独立版、企业签名稳定版、企业签名共享版等。每一种形式的企业签名都有其独特的特点&#xff0c;其中&#xff1a;  企业签名独立版&#xff1a;其特性主要为稳定性较高&#xff0c;使用者可以通过控制APP的下载量来保证APP的稳…

解构远程智能系统的视频能力链:从RTSP|RTMP协议接入到Unity3D头显呈现全流程指南

在人工智能奔腾的2025年&#xff0c;WAIC&#xff08;世界人工智能大会&#xff09;释放出一个明确信号&#xff1a;视频能力已经成为通往“远程智能”的神经中枢。在无人机、四足机器人、远程施工、巡检等新兴场景中&#xff0c;一套可靠、低延迟、可嵌入头显设备的视频传输系…