文章目录
- 1 我也许不是傻瓜,却只想做个傻瓜
- 2 环境要求
- 3 安装
- 3.1 下载源码
- 3.2 创建虚拟环境
- 3.3 安装
- 4 下载数据
- 5 查看支持的模型和数据集
- 6 评测
- 6.1 指定模型路径
- 6.2 指定配置文件
- 6.2.1 评测本地qwen2.5模型
- 6.2.1.1 查看opencompass支持的qwen2.5模型
- 6.2.1.2 创建配置文件
- 6.2.1.3 再次使用`python tools/list_configs.py | grep hf_qwen2_5`进行查看
- 6.2.1.4 运行
- 6.2.2 评测ollama模型
- 6.2.2.1 创建配置文件`eval_ollama.py`
- 6.2.2.2 启动ollama服务
- 6.2.2.3 运行方式1
- 6.2.2.4 运行方式2
- 6.2.3 使用lmdeploy加速评测
- 6.2.3.1 安装lmdeploy
- 6.2.3.2 查看支持lmdeploy加速的qwen2.5模型
- 6.2.3.3 创建配置文件
- 6.2.3.4 运行
1 我也许不是傻瓜,却只想做个傻瓜
OpenCompass
在github
中说祝贺 OpenCompass 作为大模型标准测试工具被Meta AI官方推荐,实力不俗。但官方教程真是写得那个随心所欲,我只想无脑照着教程,快速跑起来,再慢慢深入了解。但折腾半天,不是这里错就是那里有问题,根本跑不起来,差点就劝退了。于是有了这篇入门教程,力争无脑操作,躺平做个傻瓜!
2 环境要求
- 最好是
Linux
或WSL
,Windows
可能会有不期而遇的错误 - 必须是
python 3.10
,我一上来就用了python 3.12
,装了半天也装不上 - 直接
源码
安装!千万别pip install opencompass
,然后照着官方教程,直接劝退
3 安装
3.1 下载源码
git clone https://github.com/open-compass/opencompass opencompass
3.2 创建虚拟环境
conda create -n open-compass python=3.10 -y
conda activate open-compass
python --version
3.3 安装
cd opencompass
pip install -e . -i https://mirrors.aliyun.com/pypi/simple/
pip list | grep opencompass
opencompass 0.4.2 /home/ubuntu/ws/opencompass
4 下载数据
# 先进入到opencompass目录下
# 注意,opencompass下还有一个opencompass文件夹,别进错了
# cd opencompasswget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-core-20240207.zip
# 会自动解压到data文件夹中
unzip OpenCompassData-core-20240207.zip
5 查看支持的模型和数据集
OpenCompass
采用基于配置文件与命名约定
的运行机制。运行时指定的模型
和数据集
参数并非随意传递,而是通过预定义的名称与配置文件映射关系来定位。用户只需指定预定义的名称,系统就能自动关联到对应的配置文件。要查看所有可用的配置映射关系,可以运行命令python tools/list_configs.py
。
# cd opencompass
# conda activate open-compass
python tools/list_configs.py
+-----------------------------------------------+-------------------------------------------------------------------------------------+
| Model | Config Path |
|-----------------------------------------------+-------------------------------------------------------------------------------------|
| README | opencompass/configs/models/qwen/README.md |
| README | opencompass/configs/models/hf_internlm/README.md |
| accessory_llama2_7b | opencompass/configs/models/accessory/accessory_llama2_7b.py |+-----------------------------------------------+-------------------------------------------------------------------------------------+
| Dataset | Config Path |
|-----------------------------------------------+-------------------------------------------------------------------------------------|
| ARC_c_clean_ppl | opencompass/configs/datasets/ARC_c/ARC_c_clean_ppl.py |
| ARC_c_cot_gen_926652 | opencompass/configs/datasets/ARC_c/ARC_c_cot_gen_926652.py |
| ARC_c_few_shot_gen_e9b043 | opencompass/configs/datasets/ARC_c/ARC_c_few_shot_gen_e9b043.py |
6 评测
opencompass
主要有两种运行方式,一种指定模型路径
,opencompass
直接加载运行模型进行评测;一种是指定配置文件
,opencompass
加载解析配置文件,加载本地模型
或调用模型的服务化API
进行评测。
6.1 指定模型路径
# cd opencompass
# conda activate open-compass# 必须是在opencompass目录下,才有run.py这个脚本
# --hf-type 指定chat或base模型类型
# --hf-path 指定本地模型的路径,open-compass会以huggingface的方式加载模型
# --datasets 指定数据集名称,必须是在tools/list_configs.py中python run.py \--hf-type chat \--hf-path /mnt/d/models/Qwen/Qwen2.5-1.5B-Instruct \--datasets demo_gsm8k_chat_gen \--work-dir eval_results/hf/Qwen2.5-1.5B-Instruct \--debug
6.2 指定配置文件
6.2.1 评测本地qwen2.5模型
6.2.1.1 查看opencompass支持的qwen2.5模型
# cd opencompass
# conda activate open-compasspython tools/list_configs.py | grep hf_qwen2_5
| hf_qwen2_57b_a14b | opencompass/configs/models/qwen/hf_qwen2_57b_a14b.py |
| hf_qwen2_5_0_5b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_0_5b_instruct.py |
| hf_qwen2_5_14b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_14b_instruct.py |
| hf_qwen2_5_1_5b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_1_5b_instruct.py |
| hf_qwen2_5_32b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_32b_instruct.py |
| hf_qwen2_5_3b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_3b_instruct.py |
| hf_qwen2_5_72b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_72b_instruct.py |
| hf_qwen2_5_7b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_7b_instruct.py |
6.2.1.2 创建配置文件
以Qwen2.5-1.5B-Instruct
为例,即hf_qwen2_5_1_5b_instruct
,可看到它对应的配置文件为opencompass/configs/models/qwen2_5/hf_qwen2_5_1_5b_instruct.py
,以它为模板,拷贝后修改如下,并命名为 local_hf_qwen2_5_1_5b_instruct.py
:
from opencompass.models import HuggingFacewithChatTemplatemodels = [dict(type=HuggingFacewithChatTemplate,abbr='local_qwen2.5-1.5b-instruct-hf',path='/mnt/d/models/Qwen/Qwen2.5-1.5B-Instruct', # 指定本地路径max_out_len=4096,batch_size=8,run_cfg=dict(num_gpus=1),)
]
6.2.1.3 再次使用python tools/list_configs.py | grep hf_qwen2_5
进行查看
| hf_qwen2_57b_a14b | opencompass/configs/models/qwen/hf_qwen2_57b_a14b.py |
| hf_qwen2_5_0_5b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_0_5b_instruct.py |
| hf_qwen2_5_14b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_14b_instruct.py |
| hf_qwen2_5_1_5b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_1_5b_instruct.py |
| hf_qwen2_5_32b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_32b_instruct.py |
| hf_qwen2_5_3b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_3b_instruct.py |
| hf_qwen2_5_72b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_72b_instruct.py |
| hf_qwen2_5_7b_instruct | opencompass/configs/models/qwen2_5/hf_qwen2_5_7b_instruct.py |
| local_hf_qwen2_5_1_5b_instruct | opencompass/configs/models/qwen2_5/local_hf_qwen2_5_1_5b_instruct.py |
6.2.1.4 运行
# cd opencompass
# conda activate open-compass# --models 要指定tools/list_configs.py中定义的模型配置文件
python run.py \--models local_hf_qwen2_5_1_5b_instruct \--datasets demo_gsm8k_chat_gen \--work-dir eval_results/hf/Qwen2.5-1.5B-Instruct \--debug
6.2.2 评测ollama模型
6.2.2.1 创建配置文件eval_ollama.py
from mmengine.config import read_base from opencompass.models import OpenAI
from opencompass.partitioners import NaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask with read_base(): from opencompass.configs.datasets.cmmlu.cmmlu_gen import cmmlu_datasets api_meta_template = dict(round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True),
], ) models = [ dict( abbr='ollama', type=OpenAI, path='qwen3:0.6b', # 指定ollama中的模型,可通过ollama list进行查看,如果不存在,则必须先下载 # 若不在这里指定,则需要在shell中使用 export OPENAI_BASE_URL=http://192.168.56.1:11434/v1# 不能 import os,否则会报错,所以也不能使用os.environ['OPENAI_BASE_URL'] = 'http://192.168.56.1:11434/v1' # 这里要指定windows的IP,使用localhost访问不到 openai_api_base='http://192.168.56.1:11434/v1/chat/completions', # 若不在这里指定,则需要在shell中使用 export OPENAI_API_KEY=Nonekey='None', meta_template=api_meta_template, query_per_second=1, max_out_len=2048, max_seq_len=2048, batch_size=2 ), ] infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=OpenICLInferTask)),
) datasets = cmmlu_datasetsif __name__ == '__main__': from opencompass.cli.main import main import sys from pathlib import Path sys.argv.append(str(Path(__file__))) sys.argv.extend(['--work-dir', 'eval_results/ollama/qwen3_0_6b']) sys.argv.append('--debug') main()
注意:
- 代码中指定的
path='qwen3:0.6b'
, 是指定ollama中的qwen3:0.6b
模型,可通过ollama list
进行查看,如果不存在,则必须先下载 - 脚本中指定的
openai_api_base='http://192.168.56.1:11434/v1/chat/completions'
,其中的192.168.56.1
是windows
的IP
,若直接使用localhost
,无法从WSL
访问到ollama
。
6.2.2.2 启动ollama服务
在windows
中打开powershell
# 配置ollama环境变量
$env:OLLAMA_HOST="0.0.0.0:11434"
$env:OLLAMA_MODELS="D:\models\ollama"
$env:OLLAMA_DEBUG="2"# 启动ollama服务
ollama serve
6.2.2.3 运行方式1
# cd opencompass
# conda activate open-compass# 不加 --debug,可能会报错
# 08/14 23:36:45 - OpenCompass - ERROR - /home/ubuntu/ws/opencompass/opencompass/runners/local.py - _launch - 241 - task OpenICLInfer[ollama/cmmlu-chinese_civil_service_exam] fail, see outputs/default/20250814_233629/logs/infer/ollama/cmmlu-chinese_civil_service_exam.out
python run.py eval_ollama.py --debug
6.2.2.4 运行方式2
这种方式可以pycharm
中使用debug
方式运行,方便debug
# cd opencompass
# conda activate open-compasspython eval_ollama.py
6.2.3 使用lmdeploy加速评测
默认transformers加载模型,推理比较慢。使用lmdeploy加载模型,加快推理速度。
6.2.3.1 安装lmdeploy
conda activate open-compass
pip install lmdeploy
如果CUDA不是12+,请参考官方教程进行安装:使用 LMDeploy 加速评测 — OpenCompass 0.4.2 documentation
6.2.3.2 查看支持lmdeploy加速的qwen2.5模型
# cd opencompass
# conda activate open-compasspython tools/list_configs.py lmdeploy_qwen2_5
+--------------------------------+----------------------------------------------------------------------+
| Model | Config Path |
|--------------------------------+----------------------------------------------------------------------|
| lmdeploy_qwen2_5_0_5b_instruct | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_0_5b_instruct.py |
| lmdeploy_qwen2_5_14b | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_14b.py |
| lmdeploy_qwen2_5_14b_instruct | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_14b_instruct.py |
| lmdeploy_qwen2_5_1_5b | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_1_5b.py |
| lmdeploy_qwen2_5_1_5b_instruct | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_1_5b_instruct.py |
| lmdeploy_qwen2_5_32b | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_32b.py |
| lmdeploy_qwen2_5_32b_instruct | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_32b_instruct.py |
| lmdeploy_qwen2_5_3b_instruct | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_3b_instruct.py |
| lmdeploy_qwen2_5_72b | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_72b.py |
| lmdeploy_qwen2_5_72b_instruct | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_72b_instruct.py |
| lmdeploy_qwen2_5_7b | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_7b.py |
| lmdeploy_qwen2_5_7b_instruct | opencompass/configs/models/qwen2_5/lmdeploy_qwen2_5_7b_instruct.py |
+--------------------------------+----------------------------------------------------------------------+
6.2.3.3 创建配置文件
以lmdeploy_qwen2_5_1_5b_instruct
为模板,拷贝创建local_lmdeploy_qwen2_5_1_5b_instruct.py
,修改如下:
from opencompass.models import TurboMindModelwithChatTemplatemodels = [dict(type=TurboMindModelwithChatTemplate,abbr='local-qwen2.5-1.5b-instruct-turbomind',path='/mnt/d/models/Qwen/Qwen2.5-1.5B-Instruct', # 指定模型路径engine_config=dict(session_len=16384, max_batch_size=16, tp=1),gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=4096),max_seq_len=16384,max_out_len=4096,batch_size=16,run_cfg=dict(num_gpus=1),)
]
6.2.3.4 运行
# cd opencompass
# conda activate open-compass# --models 要指定tools/list_configs.py中定义的模型配置文件
python run.py \--models local_lmdeploy_qwen2_5_1_5b_instruct \--datasets demo_gsm8k_chat_gen \--work-dir eval_results/lmdeploy/Qwen2.5-1.5B-Instruct \--debug