一、算法分析:
由于语句执行一次的实际所需时间与机器的软硬件有关,则算法分析是针对语句执行次数,而非执行时间。
时间复杂度
计算时间复杂度:
常量阶
如果算法中的n是固定的,或者说n是常数,或者时间复杂度计算出来是一个常数(1万,1亿都是),不随n变化,则直接T(n)=O(1).
对于对数阶的情况,可以先列出最后t次的i值,因为i最终要>n才能跳出循环,则假设等于n,即可算出最终的次数t
空间复杂度
因为一般情况下空间较为充足,则一般只讨论时间复杂度
抽象数据类型ADT
二、线性表
A、线性表的定义与特点
线性表意思n个相同数据类型的数据元素的有序列表
其中的元素个数n定义为线性表的长度,当n=0时,称之为空表,对于非空的线性表或线性结构,特点:
存在唯一的“第一个”与“最后一个”的数据元素
除第一个元素外,结构中的每个数据元素均只有一个前驱
除最后一个外,结构中的每个数据均只有一个后继
B、线性表的顺序表示与实现
1、顺序表的初始化:
#include <stdio.h>#define MAXSIZE 100
typedef int ElemType;//顺序表定义
typedef struct{ElemType data[MAXSIZE];int length;
}SeqList;//顺序表初始化
void initList(SeqList *L)
{L->length = 0;
}int main(int argc, char const *argv[])
{//声明一个顺序表并初始化SeqList list;initList(&list);printf("初始化成功,目前长度占用%d\n",list.length);printf("目前占用内存%zu字节\n", sizeof(list.data));return 0;
}
2、顺序表的尾部添加元素:
#include <stdio.h>#define MAXSIZE 100
typedef int ElemType;//顺序表定义
typedef struct{ElemType data[MAXSIZE];int length;
}SeqList;//顺序表初始化
void initList(SeqList *L)
{L->length = 0;
}//尾部添加元素
int appendElem(SeqList *L, ElemType e)
{if (L->length>=MAXSIZE){printf("顺序表已满\n");return 0;}L->data[L->length] = e;L->length++;return 1;
}int main(int argc, char const *argv[])
{//声明一个线性表并初始化SeqList list;initList(&list);printf("初始化成功,目前长度占用%d\n",list.length);printf("目前占用内存%zu字节\n", sizeof(list.data));appendElem(&list, 88);return 0;
}
3、顺序表的遍历:
#include <stdio.h>#define MAXSIZE 100
typedef int ElemType;//顺序表定义
typedef struct{ElemType data[MAXSIZE];int length;
}SeqList;//顺序表初始化
void initList(SeqList *L)
{L->length = 0;
}//尾部添加元素
int appendElem(SeqList *L, ElemType e)
{if (L->length>=MAXSIZE){printf("顺序表已满\n");return 0;}L->data[L->length] = e;L->length++;return 1;
}//遍历
void listElem(SeqList *L)
{for (int i = 0; i < L->length; i++){printf("%d ", L->data[i]);}printf("\n");
}int main(int argc, char const *argv[])
{//声明一个线性表并初始化SeqList list;initList(&list);printf("初始化成功,目前长度占用%d\n",list.length);printf("目前占用内存%zu字节\n", sizeof(list.data));appendElem(&list, 88);appendElem(&list, 45);appendElem(&list, 43);appendElem(&list, 17);listElem(&list);return 0;
}
将顺序表的全部值,从头到尾打印一遍
4、循环表的插入元素:
#include <stdio.h>#define MAXSIZE 100
typedef int ElemType;//顺序表定义
typedef struct{ElemType data[MAXSIZE];int length;
}SeqList;//顺序表初始化
void initList(SeqList *L)
{L->length = 0;
}//尾部添加元素
int appendElem(SeqList *L, ElemType e)
{if (L->length>=MAXSIZE){printf("顺序表已满\n");return 0;}L->data[L->length] = e;L->length++;return 1;
}//遍历
void listElem(SeqList *L)
{for (int i = 0; i < L->length; i++){printf("%d ", L->data[i]);}printf("\n");
}//插入数据
int insertElem(SeqList *L, int pos, ElemType e)
{if(L->length >= MAXSIZE){printf("表已经满了\n");return 0;}if (pos < 1 || pos > L->length){printf("插入位置错误\n");return 0;}if (pos <= L->length){for (int i = L->length-1; i >= pos-1; i--){L->data[i+1] = L->data[i];}L->data[pos-1] = e;L->length++; }return 1;
}int main(int argc, char const *argv[])
{//声明一个线性表并初始化SeqList list;initList(&list);printf("初始化成功,目前长度占用%d\n",list.length);printf("目前占用内存%zu字节\n", sizeof(list.data));appendElem(&list, 88);appendElem(&list, 67);appendElem(&list, 40);appendElem(&list, 8);appendElem(&list, 23);listElem(&list);insertElem(&list, 2, 18);listElem(&list);return 0;
}
5、对表与插入位置进行检测
6、表中的删除元素:
对于删除的数的定义与传值,利用指针
利用指针意思是通过形参来改变实参,因为这样可以对函数外的值进行改变
对于表的情况检测:
#include <stdio.h>#define MAXSIZE 100
typedef int ElemType;//顺序表定义
typedef struct{ElemType data[MAXSIZE];int length;
}SeqList;//顺序表初始化
void initList(SeqList *L)
{L->length = 0;
}//尾部添加元素
int appendElem(SeqList *L, ElemType e)
{if (L->length>=MAXSIZE){printf("顺序表已满\n");return 0;}L->data[L->length] = e;L->length++;return 1;
}//遍历
void listElem(SeqList *L)
{for (int i = 0; i < L->length; i++){printf("%d ", L->data[i]);}printf("\n");
}//插入数据
int insertElem(SeqList *L, int pos, ElemType e)
{if(L->length >= MAXSIZE){printf("表已经满了\n");return 0;}if (pos < 1 || pos > L->length){printf("插入位置错误\n");return 0;}if (pos <= L->length){for (int i = L->length-1; i >= pos-1; i--){L->data[i+1] = L->data[i];}L->data[pos-1] = e;L->length++; }return 1;
}//删除数据
int deleteElem(SeqList *L, int pos, ElemType *e)
{if(L->length == 0){printf("空表\n");return 0;}if (pos < 1 || pos > L->length){printf("删除数据位置有误\n");return 0;}*e = L->data[pos-1];if (pos < L->length){for (int i = pos; i < L->length; i++){L->data[i-1] = L->data[i];}}L->length--;return 1;
}int main(int argc, char const *argv[])
{//声明一个线性表并初始化SeqList list;initList(&list);printf("初始化成功,目前长度占用%d\n",list.length);printf("目前占用内存%zu字节\n", sizeof(list.data));appendElem(&list, 88);appendElem(&list, 67);appendElem(&list, 40);appendElem(&list, 8);appendElem(&list, 23);listElem(&list);insertElem(&list, 1, 18);listElem(&list);ElemType delData;deleteElem(&list, 2, &delData);printf("被删除的数据为:%d\n", delData);listElem(&list);return 0;
}
7、表的查找:
(对于动态分配:使用malloc函数来对于堆中开辟空间,创造一个数据)
[使用注意事项:
1、需要包含标准库头文件<stdlib.h>
2、一般返回viod* 通用数据类型指针,则使用时需要进行数据强转换,可结构体或int之类
3、函数会分配指定字节数的内存空间,并且返回一个指向这块内存起始位置的void*指针。要是内存分配失败,就会返回NULL。#include <stdio.h> #include <stdlib.h>int main() {int* ptr;// 分配4个int大小的内存空间ptr = (int*)malloc(4 * sizeof(int)); //int型强转,if (ptr == NULL){printf("内存分配失败\n");return 1;}// 使用分配的内存for (int i = 0; i < 4; i++) {ptr[i] = i * 10;}for (int i = 0; i < 4; i++) {printf("ptr[%d] = %d\n", i, ptr[i]);}// 释放内存free(ptr);return 0; }
4、在使用malloc时,一定要使用sizeof操作符来计算所需内存的大小。就像前面的例子,sizeof(int)能根据不同的系统环境确定一个整数所占的字节数。(利于代码移植)
申请的空间是: 指针 指向的那块内存申请的空间
5、通过malloc分配的内存,在使用完毕后必须调用free()函数进行释放,以避免出现内存泄漏的问题。
6、malloc分配的内存中可能包含之前残留的数据,也就是这些内存不会被自动初始化。如果需要初始化为 0,可以使用calloc函数。]
8、表的动态分配地址初始化:
对于此时L所接收的是地址,返回的也是,则对于之前的函数是直接在栈区进行创建数据,使用时对地址进行操作需要使用&(取地址符),现在直接返回地址,则可直接对返回的值进行操作:
#include <stdio.h>
#include <stdlib.h>#define MAXSIZE 100
typedef int ElemType;//顺序表定义
typedef struct{ElemType *data;int length;
}SeqList;//顺序表初始化-动态分配内存
SeqList* initList()
{SeqList *L = (SeqList*)malloc(sizeof(SeqList));L->data = (ElemType*)malloc(sizeof(ElemType) * MAXSIZE);L->length = 0;return L;
}//尾部添加元素
int appendElem(SeqList *L, ElemType e)
{if (L->length>=MAXSIZE){printf("顺序表已满\n");return 0;}L->data[L->length] = e;L->length++;return 1;
}//遍历
void listElem(SeqList *L)
{for (int i = 0; i < L->length; i++){printf("%d ", L->data[i]);}printf("\n");
}//插入数据
int insertElem(SeqList *L, int pos, ElemType e)
{if(L->length >= MAXSIZE){printf("表已经满了\n");return 0;}if (pos < 1 || pos > L->length){printf("插入位置错误\n");return 0;}if (pos <= L->length){for (int i = L->length-1; i >= pos-1; i--){L->data[i+1] = L->data[i];}L->data[pos-1] = e;L->length++; }return 1;
}//删除数据
int deleteElem(SeqList *L, int pos, ElemType *e)
{if(L->length == 0){printf("空表\n");return 0;}if (pos < 1 || pos > L->length){printf("删除数据位置有误\n");return 0;}*e = L->data[pos-1];if (pos < L->length){for (int i = pos; i < L->length; i++){L->data[i-1] = L->data[i];}}L->length--;return 1;
}//查找数据位置
int findElem(SeqList *L, ElemType e)
{if (L->length == 0){printf("空列表\n");return 0;}for (int i = 0; i < L->length; i++){if(L->data[i] == e){return i + 1;}}return 0;
}
int main(int argc, char const *argv[])
{//声明一个线性表并初始化SeqList *list = initList();printf("初始化成功,目前长度占用%d\n",list->length);printf("目前占用内存%zu字节\n", sizeof(list->data));appendElem(list, 88);appendElem(list, 67);appendElem(list, 40);appendElem(list, 8);appendElem(list, 23);listElem(list);insertElem(list, 1, 18);listElem(list);ElemType delData;deleteElem(list, 2, &delData);printf("被删除的数据为:%d\n", delData);listElem(list);printf("%d\n", findElem(list, 40));return 0;
}
C、线性表的链式表达与实现
1、定义:
它是一种物理存储单元上非连续、非顺序的存储结构 ,数据元素的逻辑顺序通过链表中的指针链接次序实现。由一系列结点组成,结点可在运行时动态生成。
2、结点:
每个结点包含两部分,一是存储数据元素的数据域 ,用于存放具体数据;二是存储下一个结点地址的指针域 (最后一个指针域为NULL)(在双向链表中还有指向前驱结点的指针域 ),通过指针将各个结点连接起来,形成链表结构。
3、单链表-存储结构:
使用结构体来编写节点。
typedef int ElemType;
typedef struct node
{ElemType data;//数据域struct node *next;//指针域
}Node; //别名
4、单链表-初始化:
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}int main(int argc, char const *argv[])
{Node *list = initList();return 0;
}
5、单链表-头插法
头插法-插入节点,创建新结点并且将指针域值变换
为什么是头插法,因为传入的一直是第一个结点
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}int main(int argc, char const *argv[])
{Node *list = initList();insertHead(list, 10);insertHead(list, 20);return 0;
}
6、单链表-遍历
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}int main(int argc, char const *argv[])
{Node *list = initList();insertHead(list, 10);insertHead(list, 20);insertHead(list, 30);listNode(list);return 0;
}
7、单链表-尾插法
尾插法就是在末尾插入结点
但尾插法需要先知道尾部值的地址,则需要通过遍历找到最后结点指针域是NULL的Node* get_tail(Node *L) {Node *p=L;while( p -> next != NULL) {p = p -> next ; }return p; }
然后再返回新的尾结点
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 10);tail = insertTail(tail, 20);tail = insertTail(tail, 30);listNode(list);return 0;
}
8、单链表-在指定位置插入数据
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{//用来保存插入位置的前驱节点Node *p = L;int i = 0;//遍历链表找到插入位置的前驱节点while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}//要插入的新节点Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 10);tail = insertTail(tail, 20);tail = insertTail(tail, 30);listNode(list);insertNode(list, 2, 15);listNode(list);return 0;
}
9、单链表-删除节点
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}//删除节点
int deleteNode(Node *L, int pos)
{//要删除节点的前驱Node *p = L;int i = 0;//遍历链表,找到要删除节点的前驱。while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}if(p->next == NULL){printf("要删除的位置错误\n");return 0;}//q指向要删除的节点Node *q = p->next;//让要删除节点的前驱指向要删除节点的后继p->next = q->next;//释放要删除节点的内存空间free(q);return 1;
}int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 10);tail = insertTail(tail, 20);tail = insertTail(tail, 30);listNode(list);insertNode(list, 2, 15);listNode(list);deleteNode(list, 2);listNode(list);return 0;
}
注意删除节点,一定要释放所删除节点的空间(因为是在堆区中创建的)
10、单链表-获取链表长度
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}//删除节点
int deleteNode(Node *L, int pos)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}if(p->next == NULL){printf("要删除的位置错误\n");return 0;}Node *q = p->next;p->next = q->next;free(q);return 1;
}//获取链表长度
int listLength(Node *L)
{Node *p = L;int len = 0;while(p != NULL){p = p->next;len++;}return len;
}int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 10);tail = insertTail(tail, 20);tail = insertTail(tail, 30);listNode(list);insertNode(list, 2, 15);listNode(list);deleteNode(list, 2);listNode(list);printf("%d\n", listLength(list));return 0;
}
和遍历相似
11、单链表-释放链表
释放链表:释放除头结点之后的所有节点
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}//删除节点
int deleteNode(Node *L, int pos)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}if(p->next == NULL){printf("要删除的位置错误\n");return 0;}Node *q = p->next;p->next = q->next;free(q);return 1;
}//获取链表长度
int listLength(Node *L)
{Node *p = L;int len = 0;while(p != NULL){p = p->next;len++;}return len;
}//释放链表
void freeList(Node *L)
{Node *p = L->next;Node *q;while(p != NULL){q = p->next;free(p);p = q;}L->next = NULL;
}int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 10);tail = insertTail(tail, 20);tail = insertTail(tail, 30);listNode(list);insertNode(list, 2, 15);listNode(list);deleteNode(list, 2);listNode(list);printf("%d\n", listLength(list));freeList(list);printf("%d\n", listLength(list));return 0;
}
D、线性表的应用
1、单链表--现只给出了头指针,在不改变链表的情况下查找到其中的倒数第K个位置上的data域的值
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}//删除节点
int deleteNode(Node *L, int pos)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}if(p->next == NULL){printf("要删除的位置错误\n");return 0;}Node *q = p->next;p->next = q->next;free(q);return 1;
}//获取链表长度
int listLength(Node *L)
{Node *p = L;int len = 0;while(p != NULL){p = p->next;len++;}return len;
}//释放链表
void freeList(Node *L)
{Node *p = L->next;Node *q;while(p != NULL){q = p->next;free(p);p = q;}L->next = NULL;
}//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{Node *fast = L->next;Node *slow = L->next;for (int i = 0; i < k; i++){fast = fast->next;}while(fast != NULL){fast = fast->next;slow = slow->next;}printf("倒数第%d个节点值为:%d\n", k, slow->data);return 1;
}int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 10);tail = insertTail(tail, 20);tail = insertTail(tail, 30);tail = insertTail(tail, 40);tail = insertTail(tail, 50);tail = insertTail(tail, 60);tail = insertTail(tail, 70);listNode(list);findNodeFS(list, 3);return 0;
}
2、单链表--对于两个不同长度链表,其末尾是相同的几个结点,要找到最开始相同的结点的指针域
获取两个链表长度进行相减得到步差,这时就也可以使用快慢指针从两个链表中进行寻找,同时走到同一个地址时,则该的结点为要求节点
3、单链表--删除绝对值相同的节点
#include <stdio.h>
#include <stdlib.h>typedef char ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{Node *node = (Node*)malloc(sizeof(Node));node->data = e;node->next = NULL;return node;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%c ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{tail->next = node;node->next = NULL;return node;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}//删除节点
int deleteNode(Node *L, int pos)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}if(p->next == NULL){printf("要删除的位置错误\n");return 0;}Node *q = p->next;p->next = q->next;free(q);return 1;
}//获取链表长度
int listLength(Node *L)
{Node *p = L;int len = 0;while(p != NULL){p = p->next;len++;}return len;
}//释放链表
void freeList(Node *L)
{Node *p = L->next;Node *q;while(p != NULL){q = p->next;free(p);p = q;}L->next = NULL;
}//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{Node *fast = L->next;Node *slow = L->next;for (int i = 0; i < k; i++){fast = fast->next;}while(fast != NULL){fast = fast->next;slow = slow->next;}printf("倒数第%d个节点值为:%d\n", k, slow->data);return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{if(headA == NULL || headB == NULL){return NULL;}Node *p = headA;int lenA = 0;int lenB = 0;//遍历链表A,获取链表A的长度while(p != NULL){p = p->next;lenA++;}//遍历链表B,获取链表B的长度p = headB;while(p != NULL){p = p->next;lenB++;}Node *m;//快指针Node *n;//慢指针int step;//两个单词之间数量的差值,可以用于快指针先走的步数if (lenA > lenB){step = lenA - lenB;m = headA;n = headB;}else{step = lenB - lenA;m = headB;n = headA;}//让快指针先走step步for (int i = 0; i < step; i++){m = m->next;}//快慢指针同步走,直到指向同一个节点退出循环while(m != n){m = m->next;n = n->next;}return m;
}int main(int argc, char const *argv[])
{Node *listA = initList();Node *listB = initList();Node *tailA = get_tail(listA);Node *tailB = get_tail(listB);tailA = insertTail(tailA, 'l');tailA = insertTail(tailA, 'o');tailA = insertTail(tailA, 'a');tailA = insertTail(tailA, 'd');tailB = insertTail(tailB, 'b');tailB = insertTail(tailB, 'e');Node *nodeI = initListWithElem('i');tailA = insertTailWithNode(tailA, nodeI);tailB = insertTailWithNode(tailB, nodeI);Node *nodeN = initListWithElem('n');tailA = insertTailWithNode(tailA, nodeN);tailB = insertTailWithNode(tailB, nodeN);Node *nodeG = initListWithElem('g');tailA = insertTailWithNode(tailA, nodeG);tailB = insertTailWithNode(tailB, nodeG);listNode(listA);listNode(listB);printf("%c\n",findIntersectionNode(listA,listB)->data);return 0;
}
该代码思路就是通过数来控制数组下标,再通过该数组下标对应的数进行判断是否有重复的,可以进行除重使用
注:
对于为什么使用指针接收或初始化数组,因为在堆区中申请空间使用malloc函数,其的使用方法是:
(void*)malloc(申请的空间大小),其返回的也是指针型的空间地址。
所以应该使用指针去接收
并且为了防止在之前的堆区数据未释放干净,使申请堆区内存时,申请失败
则可以在申请后进行一次判断if (p == NULL) {printf("内存分配失败\n");return; }
4、单链表--反转链表
进行编写的图示经过
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{Node *node = (Node*)malloc(sizeof(Node));node->data = e;node->next = NULL;return node;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{tail->next = node;node->next = NULL;return node;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}//删除节点
int deleteNode(Node *L, int pos)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}if(p->next == NULL){printf("要删除的位置错误\n");return 0;}Node *q = p->next;p->next = q->next;free(q);return 1;
}//获取链表长度
int listLength(Node *L)
{Node *p = L;int len = 0;while(p != NULL){p = p->next;len++;}return len;
}//释放链表
void freeList(Node *L)
{Node *p = L->next;Node *q;while(p != NULL){q = p->next;free(p);p = q;}L->next = NULL;
}//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{Node *fast = L->next;Node *slow = L->next;for (int i = 0; i < k; i++){fast = fast->next;}while(fast != NULL){fast = fast->next;slow = slow->next;}printf("倒数第%d个节点值为:%d\n", k, slow->data);return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{if(headA == NULL || headB == NULL){return NULL;}Node *p = headA;int lenA = 0;int lenB = 0;while(p != NULL){p = p->next;lenA++;}p = headB;while(p != NULL){p = p->next;lenB++;}Node *m;Node *n;int step;if (lenA > lenB){step = lenA - lenB;m = headA;n = headB;}else{step = lenB - lenA;m = headB;n = headA;}for (int i = 0; i < step; i++){m = m->next;}while(m != n){m = m->next;n = n->next;}return m;
}//删除绝对值相同的节点
void removeNode(Node *L, int n)
{Node *p = L;int index;int *q = (int*)malloc(sizeof(int)*(n+1));for (int i = 0; i < n+1; i++){*(q + i) = 0;}while(p->next != NULL){index = abs(p->next->data);if(*(q+index) == 0){*(q + index) = 1;p = p->next;}else{Node *temp = p->next;p->next = temp->next;free(temp);}}free(q);
}//反转链表
Node* reverseList(Node* head)
{Node *first = NULL;Node *second = head->next;Node *third;while(second != NULL){third = second->next;second->next = first;first = second;second = third;}Node *hd = initList();hd->next = first;return hd;
}int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 1);tail = insertTail(tail, 2);tail = insertTail(tail, 3);tail = insertTail(tail, 4);tail = insertTail(tail, 5);tail = insertTail(tail, 6);listNode(list);Node* reverse = reverseList(list);listNode(reverse);return 0;
}
5、单链表--删除中间节点
主要是利用快慢指针来进行寻找中间位置
针对奇数链表
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{Node *node = (Node*)malloc(sizeof(Node));node->data = e;node->next = NULL;return node;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{tail->next = node;node->next = NULL;return node;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}//删除节点
int deleteNode(Node *L, int pos)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}if(p->next == NULL){printf("要删除的位置错误\n");return 0;}Node *q = p->next;p->next = q->next;free(q);return 1;
}//获取链表长度
int listLength(Node *L)
{Node *p = L;int len = 0;while(p != NULL){p = p->next;len++;}return len;
}//释放链表
void freeList(Node *L)
{Node *p = L->next;Node *q;while(p != NULL){q = p->next;free(p);p = q;}L->next = NULL;
}//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{Node *fast = L->next;Node *slow = L->next;for (int i = 0; i < k; i++){fast = fast->next;}while(fast != NULL){fast = fast->next;slow = slow->next;}printf("倒数第%d个节点值为:%d\n", k, slow->data);return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{if(headA == NULL || headB == NULL){return NULL;}Node *p = headA;int lenA = 0;int lenB = 0;while(p != NULL){p = p->next;lenA++;}p = headB;while(p != NULL){p = p->next;lenB++;}Node *m;Node *n;int step;if (lenA > lenB){step = lenA - lenB;m = headA;n = headB;}else{step = lenB - lenA;m = headB;n = headA;}for (int i = 0; i < step; i++){m = m->next;}while(m != n){m = m->next;n = n->next;}return m;
}//删除绝对值相同的节点
void removeNode(Node *L, int n)
{Node *p = L;int index;int *q = (int*)malloc(sizeof(int)*(n+1));for (int i = 0; i < n+1; i++){*(q + i) = 0;}while(p->next != NULL){index = abs(p->next->data);if(*(q+index) == 0){*(q + index) = 1;p = p->next;}else{Node *temp = p->next;p->next = temp->next;free(temp);}}free(q);
}//反转链表
Node* reverseList(Node* head)
{Node *first = NULL;Node *second = head->next;Node *third;while(second != NULL){third = second->next;second->next = first;first = second;second = third;}Node *hd = initList();hd->next = first;return hd;
}//删除中间节点
int delMiddleNode(Node *head)
{Node *fast = head->next;Node *slow = head;while(fast != NULL && fast->next != NULL){fast = fast->next->next;slow = slow->next;}Node *q = slow->next;slow->next = q->next;free(q);return 1;
}int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 1);tail = insertTail(tail, 2);tail = insertTail(tail, 3);tail = insertTail(tail, 4);tail = insertTail(tail, 5);tail = insertTail(tail, 6);tail = insertTail(tail, 7);listNode(list);delMiddleNode(list);listNode(list);return 0;
}
6、单链表--将链表:a,a1,a2.....an-2,an-1,an 变为a,an,a1,an-1,a2,an-2......
设计思路为:先找到中间的位置将其断开,然后将后半部分反转,再进行插空链接
成为这样纸
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{Node *node = (Node*)malloc(sizeof(Node));node->data = e;node->next = NULL;return node;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{tail->next = node;node->next = NULL;return node;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}//删除节点
int deleteNode(Node *L, int pos)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}if(p->next == NULL){printf("要删除的位置错误\n");return 0;}Node *q = p->next;p->next = q->next;free(q);return 1;
}//获取链表长度
int listLength(Node *L)
{Node *p = L;int len = 0;while(p != NULL){p = p->next;len++;}return len;
}//释放链表
void freeList(Node *L)
{Node *p = L->next;Node *q;while(p != NULL){q = p->next;free(p);p = q;}L->next = NULL;
}//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{Node *fast = L->next;Node *slow = L->next;for (int i = 0; i < k; i++){fast = fast->next;}while(fast != NULL){fast = fast->next;slow = slow->next;}printf("倒数第%d个节点值为:%d\n", k, slow->data);return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{if(headA == NULL || headB == NULL){return NULL;}Node *p = headA;int lenA = 0;int lenB = 0;while(p != NULL){p = p->next;lenA++;}p = headB;while(p != NULL){p = p->next;lenB++;}Node *m;Node *n;int step;if (lenA > lenB){step = lenA - lenB;m = headA;n = headB;}else{step = lenB - lenA;m = headB;n = headA;}for (int i = 0; i < step; i++){m = m->next;}while(m != n){m = m->next;n = n->next;}return m;
}//删除绝对值相同的节点
void removeNode(Node *L, int n)
{Node *p = L;int index;int *q = (int*)malloc(sizeof(int)*(n+1));for (int i = 0; i < n+1; i++){*(q + i) = 0;}while(p->next != NULL){index = abs(p->next->data);if(*(q+index) == 0){*(q + index) = 1;p = p->next;}else{Node *temp = p->next;p->next = temp->next;free(temp);}}free(q);
}//反转链表
Node* reverseList(Node* head)
{Node *first = NULL;Node *second = head->next;Node *third;while(second != NULL){third = second->next;second->next = first;first = second;second = third;}Node *hd = initList();hd->next = first;return hd;
}//删除中间节点
int delMiddleNode(Node *head)
{Node *fast = head->next;Node *slow = head;while(fast != NULL && fast->next != NULL){fast = fast->next->next;slow = slow->next;}Node *q = slow->next;slow->next = q->next;free(q);return 1;
}//链表重新排序
void reOrderList(Node *head)
{Node *fast = head->next;Node *slow = head;while(fast != NULL && fast->next != NULL){fast = fast->next->next;slow = slow->next;}Node *first = NULL;Node *second = slow->next;slow->next = NULL;Node *third = NULL;while(second != NULL){third = second->next;second->next = first;first = second;second = third;}Node *p1 = head->next;Node *q1 = first;Node *p2, *q2;while(p1 != NULL && q1 != NULL){p2 = p1->next;q2 = q1->next;p1->next = q1;q1->next = p2;p1 = p2;q1 = q2;}
}
int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 1);tail = insertTail(tail, 2);tail = insertTail(tail, 3);tail = insertTail(tail, 4);tail = insertTail(tail, 5);tail = insertTail(tail, 6);listNode(list);reOrderList(list);listNode(list);return 0;
}
7、单链表--判断链表是否有环
就是利用快慢指针来看是否能追到,因为快慢,所以只要有环不论多少次都会追到,则可运用其来进行判断。
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{Node *node = (Node*)malloc(sizeof(Node));node->data = e;node->next = NULL;return node;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{tail->next = node;node->next = NULL;return node;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}//删除节点
int deleteNode(Node *L, int pos)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}if(p->next == NULL){printf("要删除的位置错误\n");return 0;}Node *q = p->next;p->next = q->next;free(q);return 1;
}//获取链表长度
int listLength(Node *L)
{Node *p = L;int len = 0;while(p != NULL){p = p->next;len++;}return len;
}//释放链表
void freeList(Node *L)
{Node *p = L->next;Node *q;while(p != NULL){q = p->next;free(p);p = q;}L->next = NULL;
}//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{Node *fast = L->next;Node *slow = L->next;for (int i = 0; i < k; i++){fast = fast->next;}while(fast != NULL){fast = fast->next;slow = slow->next;}printf("倒数第%d个节点值为:%d\n", k, slow->data);return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{if(headA == NULL || headB == NULL){return NULL;}Node *p = headA;int lenA = 0;int lenB = 0;while(p != NULL){p = p->next;lenA++;}p = headB;while(p != NULL){p = p->next;lenB++;}Node *m;Node *n;int step;if (lenA > lenB){step = lenA - lenB;m = headA;n = headB;}else{step = lenB - lenA;m = headB;n = headA;}for (int i = 0; i < step; i++){m = m->next;}while(m != n){m = m->next;n = n->next;}return m;
}//删除绝对值相同的节点
void removeNode(Node *L, int n)
{Node *p = L;int index;int *q = (int*)malloc(sizeof(int)*(n+1));for (int i = 0; i < n+1; i++){*(q + i) = 0;}while(p->next != NULL){index = abs(p->next->data);if(*(q+index) == 0){*(q + index) = 1;p = p->next;}else{Node *temp = p->next;p->next = temp->next;free(temp);}}free(q);
}//反转链表
Node* reverseList(Node* head)
{Node *first = NULL;Node *second = head->next;Node *third;while(second != NULL){third = second->next;second->next = first;first = second;second = third;}Node *hd = initList();hd->next = first;return hd;
}//删除中间节点
int delMiddleNode(Node *head)
{Node *fast = head->next;Node *slow = head;while(fast != NULL && fast->next != NULL){fast = fast->next->next;slow = slow->next;}Node *q = slow->next;slow->next = q->next;free(q);return 1;
}//链表重新排序
void reOrderList(Node *head)
{Node *fast = head;Node *slow = head;while(fast != NULL && fast->next != NULL){fast = fast->next->next;slow = slow->next;}Node *first = NULL;Node *second = slow->next;slow->next = NULL;Node *third = NULL;while(second !=NULL){third = second->next;second->next = first;first = second;second = third;}Node *p1 = head->next;Node *q1 = first;Node *p2, *q2;while(p1 != NULL && q1 != NULL){p2 = p1->next;q2 = q1->next;p1->next = q1;q1->next = p2;p1 = p2;q1 = q2;}
}//判断链表是否有环
int isCycle(Node *head)
{Node *fast = head;Node *slow = head;while(fast != NULL && fast->next != NULL){fast = fast->next->next;slow = slow->next;if (fast == slow){return 1;}}return 0;
}int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 1);tail = insertTail(tail, 2);tail = insertTail(tail, 3);Node *three = tail;tail = insertTail(tail, 4);tail = insertTail(tail, 5);tail = insertTail(tail, 6);tail = insertTail(tail, 7);tail = insertTail(tail, 8);tail->next = three;//listNode(list);if (isCycle(list)){printf("有环\n");}else{printf("无环\n");}return 0;
}
8、单链表--判断链表有环的入口在哪
也可运用快慢指针,当第一次相遇后,让一个停止,另一个继续走,这时记录他们所走的次数,则可知道这个环中有几个节点,再让其快慢指针重新走,并让快指针先走这几步,再同步走,当相遇时,此节点则为入口节点
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;typedef struct node{ElemType data;struct node *next;
}Node;//初化链表
Node* initList()
{Node *head = (Node*)malloc(sizeof(Node));head->data = 0;head->next = NULL;return head;
}//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{Node *node = (Node*)malloc(sizeof(Node));node->data = e;node->next = NULL;return node;
}//头插法
int insertHead(Node* L, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;p->next = L->next;L->next = p;return 1;
}//遍历
void listNode(Node* L)
{Node *p = L->next;while(p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//获取尾部结点
Node* get_tail(Node *L)
{Node *p = L;while(p->next != NULL){p = p->next;}return p;
}//尾插法
Node* insertTail(Node *tail, ElemType e)
{Node *p = (Node*)malloc(sizeof(Node));p->data = e;tail->next = p;p->next = NULL;return p;
}//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{tail->next = node;node->next = NULL;return node;
}//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}Node *q = (Node*)malloc(sizeof(Node));q->data = e;q->next = p->next;p->next = q;return 1;
}//删除节点
int deleteNode(Node *L, int pos)
{Node *p = L;int i = 0;while(i < pos-1){p = p->next;i++;if (p == NULL){return 0;}}if(p->next == NULL){printf("要删除的位置错误\n");return 0;}Node *q = p->next;p->next = q->next;free(q);return 1;
}//获取链表长度
int listLength(Node *L)
{Node *p = L;int len = 0;while(p != NULL){p = p->next;len++;}return len;
}//释放链表
void freeList(Node *L)
{Node *p = L->next;Node *q;while(p != NULL){q = p->next;free(p);p = q;}L->next = NULL;
}//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{Node *fast = L->next;Node *slow = L->next;for (int i = 0; i < k; i++){fast = fast->next;}while(fast != NULL){fast = fast->next;slow = slow->next;}printf("倒数第%d个节点值为:%d\n", k, slow->data);return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{if(headA == NULL || headB == NULL){return NULL;}Node *p = headA;int lenA = 0;int lenB = 0;while(p != NULL){p = p->next;lenA++;}p = headB;while(p != NULL){p = p->next;lenB++;}Node *m;Node *n;int step;if (lenA > lenB){step = lenA - lenB;m = headA;n = headB;}else{step = lenB - lenA;m = headB;n = headA;}for (int i = 0; i < step; i++){m = m->next;}while(m != n){m = m->next;n = n->next;}return m;
}//删除绝对值相同的节点
void removeNode(Node *L, int n)
{Node *p = L;int index;int *q = (int*)malloc(sizeof(int)*(n+1));for (int i = 0; i < n+1; i++){*(q + i) = 0;}while(p->next != NULL){index = abs(p->next->data);if(*(q+index) == 0){*(q + index) = 1;p = p->next;}else{Node *temp = p->next;p->next = temp->next;free(temp);}}free(q);
}//反转链表
Node* reverseList(Node* head)
{Node *first = NULL;Node *second = head->next;Node *third;while(second != NULL){third = second->next;second->next = first;first = second;second = third;}Node *hd = initList();hd->next = first;return hd;
}//删除中间节点
int delMiddleNode(Node *head)
{Node *fast = head->next;Node *slow = head;while(fast != NULL && fast->next != NULL){fast = fast->next->next;slow = slow->next;}Node *q = slow->next;slow->next = q->next;free(q);return 1;
}//链表重新排序
void reOrderList(Node *head)
{Node *fast = head;Node *slow = head;while(fast != NULL && fast->next != NULL){fast = fast->next->next;slow = slow->next;}Node *first = NULL;Node *second = slow->next;slow->next = NULL;Node *third = NULL;while(second !=NULL){third = second->next;second->next = first;first = second;second = third;}Node *p1 = head->next;Node *q1 = first;Node *p2, *q2;while(p1 != NULL && q1 != NULL){p2 = p1->next;q2 = q1->next;p1->next = q1;q1->next = p2;p1 = p2;q1 = q2;}
}//判断链表是否有环
int isCycle(Node *head)
{Node *fast = head;Node *slow = head;while(fast != NULL && fast->next != NULL){fast = fast->next->next;slow = slow->next;if (fast == slow){return 1;}}return 0;
}//找到链表环的入口
Node* findBegin(Node *head)
{Node *fast = head;Node *slow = head;while(fast != NULL && fast->next != NULL){fast = fast->next->next;slow = slow->next;if (fast == slow){Node *p = fast;int count = 1;while(p->next != slow){count++;p = p->next;}fast = head;slow = head;for (int i = 0; i < count; i++){fast = fast->next;}while(fast != slow){fast = fast->next;slow = slow->next;}return slow;}}return NULL;
}
int main(int argc, char const *argv[])
{Node *list = initList();Node *tail = get_tail(list);tail = insertTail(tail, 1);tail = insertTail(tail, 2);tail = insertTail(tail, 3);Node *three = tail;tail = insertTail(tail, 4);tail = insertTail(tail, 5);tail = insertTail(tail, 6);tail = insertTail(tail, 7);tail = insertTail(tail, 8);tail->next = three;Node *p = findBegin(list);printf("%d\n", p->data);return 0;
}
E、双向链表
1、双向链表--初始化
比单链表多了一个指向前驱的指针
2、双向链表--头插法
变为
3、双向链表--尾插法
与单链表相同需要通过遍历找到最后结点指针域是NULL的
Node* get_tail(Node *L)
{Node *p=L;while( p -> next != NULL){p = p -> next ;}return p;
}
再进行尾插法
4、双向链表--在指定位置插入数据
首先先找到所插入位置的前一个节点(利用遍历)
再进行插入:
5、双向链表--删除节点
相同先通过遍历找到所删除节点的前驱位置,再进行操作
删除节点为将该节点前驱和后继进行相连,并将本节点申请的空间进行释放
F、顺序表与链表的对比
结语
学习于B站的 逊哥带你学计算机 up主 的 《数据结构(C 语言描述)》也许是全站最良心最通俗易懂最好看的数据结构课(最迟每周五更新~~)
还在学习中,如有错误还请大佬们指出,有问题可相互交流
《数据结构(C 语言描述)》也许是全站最良心最通俗易懂最好看的数据结构课(最迟每周五更新~~)_哔哩哔哩_bilibili