文章目录
- 二叉搜索树
- 查找
- 插入
- 删除
- AVL树
- 概念
- 插入
- 旋转
- AVL验证
- 红黑树
- 概念
- 插入
- 检测
二叉搜索树
也称二叉排序树或二叉查找树
二叉搜索树:可以为空,若不为空满足以下性质
⭐1,非空左子树小于根节点的值
⭐2,非空右子大于根节点的值
⭐3,左右子树都是二叉搜索树
二叉搜索树节点代码:
template<class K>
struct TreeNode
{TreeNode<K>* _left;TreeNode<K>* _right;K _key;TreeNode(const K& key):_left(nullptr),_right(nullptr),_key(key){}
};
查找
a,大于根节点向右找,小于向左找。
b,最多查找高度次,若走到空了,说没没有这个数。
bool find(const K& key)
{Node* cur = _root;while (cur){if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}elsereturn true;}return false;
插入
a, 若树是空=
=,新增节点,将节点赋值给_root;
b, 若树不为空,按二叉搜索树性质==找到插入位置,插入
代码实现
bool Insert(const K& key)
{if (_root == nullptr){_root = new Node(key);return true;}Node* cur = _root;Node* parent = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}elsereturn false;}cur = new Node(key);if (cur->_key > parent->_key){parent->_right = cur;}else{parent->_left = cur;}return true;
}
删除
删除要分4种情况:
a, 删除节点无左右子树
b, 删除节点只有左子树
c, 删除节点只有右子树
d, 删除节点左右子树都有
实际情况中,a可以和b/c结合起来,因此情况有三种
b:让父亲节点指向左子树(两种情况,要删除的节点是父亲的左节点还是右节点),删除节点
c:让父亲节点指向右子树,删除节点
d:找到左子树最大节点,与根节点值替换(❤因为最大,所以该节点无左子树,或只能有左子树)再按照b方法处理,删除替换的节点。 //////////////或者找右子树最小节点,再按照c方法处理,删除替换节点。
代码实现:
bool Erase(const K& key)
{Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key == key)break;else if (cur->_key < key){parent = cur;cur = cur->_right;}else{parent = cur;cur = cur->_left;}}if (cur == nullptr)return false;//左空 a情况的左右子树都空也进入这里if (cur->_left == nullptr){if (cur == _root)_root = cur->_right;else{if (parent->_left == cur){parent->_left = cur->_right;}elseparent->_right = cur->_right;}}//右空else if (cur->_right == nullptr){if (cur == _root)_root = cur->_left;else{if (parent->_left == cur){parent->_left = cur->_left;}elseparent->_right = cur->_left;}}else //替换{parent = cur;Node* leftmax = cur->_left;while (leftmax->_right){parent = leftmax;leftmax = leftmax->_right;}swap(cur->_key, leftmax->_key);if (parent->_left == leftmax){parent->_left = leftmax->_left;}elseparent->_right = leftmax->_left;cur = leftmax;}delete cur;return true;return false;
}```c
template<class K>
class BSTree
{typedef TreeNode<K> Node;
public:BSTree():_root(nullptr){}
void Inorder()
{_Inorder(_root);
}
void _Inorder(Node* cur)
{if (cur == nullptr)return;_Inorder(cur->_left);cout << cur->_key << " ";_Inorder(cur->_right);
}
private:Node* _root;
};
AVL树
概念
虽然二叉搜索树加快了查找效率,但是如果数据接近顺序,那么二叉树就退化成单侧树了,查找元素就相当于在顺序表查找,效率低下,所以发明了AVL树,
AVL树:是空树或满足以下性质的二叉搜索树
⭐1,左右树都是二叉搜索树
⭐2,左右子树高度之差(简称平衡因子)绝对值不超过1,
搜索时间复杂度log2n
AVL节点代码:
struct AVLTreeNode
{AVLTreeNode(const T& date = T()):_left(nullptr),_right(nullptr),_parent(nullptr),_date(date),_bf(0){}AVLTreeNode* _left;AVLTreeNode* _right;AVLTreeNode* _parent;T _date;int _bf;
};
插入
AVL树插入分两步
1,按二叉搜索树性质插入节点,
2,调整平衡因子
插入新节点,那父节点平衡因子一定要调整,如果插在父节点左子树,则父节点平衡–,反之++
接下来会有三种情况:
a,如果父节点平衡因子=0,说明平衡了,不用再调整了
b,如果父节点等于±1,说明还需要向上调整,祖父节点的平衡因子也要调整
c,如果父节点平衡因子等于±2,说明不平衡了,需要旋转。
旋转
旋转分4种
1,如果新节点插在较高左子树左侧:左左,右单旋
2,如果新节点插在较高右子树右侧:右右,左单旋
3,如果新节点插在较高左子树右侧:左右,先左单旋再右单旋
旋转后考虑平衡因子更新,据图得知90父节点为1,30子节点为0
如果新插入节点是60,则父子为0,
根据新插入节点左右子树不同,平衡因子更新不同
4,如果新节点插在较高右子树左侧:右左,先右单旋再左单旋
参考左右单旋
总结:
- 当父节点等于2时,
若子节点=1,则左单旋
若子节点=-1,则右单旋再单旋
- 当父节点等于-2
若字节点=-1,则右单旋
若子节点=1,则左右单旋
代码实现:
template<class T>
class AVLTree
{typedef AVLTreeNode<T> Node;
public:AVLTree():_root(nullptr){}bool Insert(const T& date){if (nullptr == _root){_root = new Node(date);return true;}Node* pCur = _root;Node* pParent = nullptr;while (pCur){if (pCur->_date < date){pParent = pCur;pCur = pCur->_right;}else if (pCur->_date > date){pParent = pCur;pCur = pCur->_left;}else{return false;}}pCur = new Node(date);if (pParent->_date > date){pParent->_left = pCur;}else if (pParent->_date < date){pParent->_right = pCur;}pCur->_parent = pParent;while (pParent){if (pParent->_left == pCur){pParent->_bf--;}elsepParent->_bf++;if (pParent->_bf == 0)break;else if (pParent->_bf == -1 || pParent->_bf == 1){pCur = pParent;pParent = pParent->_parent;}else if (pParent->_bf == 2 || pParent->_bf == -2){if (pParent->_bf == 2 && pCur->_bf == 1){RotateL(pParent);}else if (pParent->_bf == -2 && pCur->_bf == -1){RotateR(pParent);}else if (pParent->_bf == 2 && pCur->_bf == -1){RotateRL(pParent);}else if (pParent->_bf == -2 && pCur->_bf == 1){RotateLR(pParent);}elsereturn false;}}return true;}void RotateL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;Node* pnode = parent->_parent;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (pnode->_right == parent){pnode->_right = cur;}elsepnode->_left = cur;cur->_parent = pnode;}parent->_bf = cur->_bf = 0;}void RotateR(Node* parent){Node* cur = parent->_left;Node* curright = cur->_right;Node* pnode = parent->_parent;parent->_left = curright;if (curright){curright->_parent = parent;}cur->_right = parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (pnode->_right == parent){pnode->_right = cur;}elsepnode->_left = cur;cur->_parent = pnode;}cur->_bf = parent->_bf = 0;}void RotateRL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;int bf = curleft->_bf;RotateR(cur);RotateL(parent);if (bf == 0){cur->_bf = parent->_bf = curleft->_bf = 0;}else if (bf == 1){parent->_bf = -1;cur->_bf = 0;curleft->_bf = 0;}else if (bf == -1){cur->_bf = 1;curleft->_bf = 0;parent->_bf = 0;}elseassert(false);}void RotateLR(Node* parent){Node* cur = parent->_left;Node* curright = cur->_right;int bf = curright->_bf;RotateL(cur);RotateR(parent);if (bf == 0){cur->_bf = parent->_bf = curright->_bf = 0;}else if (bf == 1){cur->_bf = -1;parent->_bf = 0;curright->_bf = 0;}else if (bf == -1){cur->_bf = 1;curright->_bf = 0;parent->_bf = 0;}elseassert(false);}void Inorder(Node* root){if (root == nullptr){return;}Inorder(root->_left);cout << root->_date;Inorder(root->_right);}void Inorder(){Inorder(_root);}int Height(Node* root){if (root == nullptr)return 0;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}bool IsBalance(Node* root){if (root == nullptr)return true;int left = Height(root->_left);int right = Height(root->_right);if (right - left != root->_bf){std::cout << "平衡因子错误" << root->_bf << std::endl;}return abs(left - right) < 2&& IsBalance(root->_left)&& IsBalance(root->_right);}private:Node* _root;
};
AVL验证
1,中序遍历,如果是升序则说明是二叉平衡树
2,判断左右子树高度差不超过1,确认平衡性
红黑树
概念
AVL树限制比较大,旋转次数多,所以发明了红黑树。
红黑树:一种二叉搜索树,每个节点加了颜色限制红或黑,通过对每一条路径颜色限制,确保红黑树最短路径不会超过最短路径的两倍,因而平衡。
❤红黑树性质:
1,根节点必须是黑色的
2,每个节点不是黑色的就是红色的
3,每一条路径黑色节点数相同
4,如果一个节点是红色的,那么两个孩子都是黑色的(不能出现连续的红色)
5,叶子节点是黑色的(此处叶子节点是空)
插入
💪如果树是空的,说明插入的是根节点,直接设置为黑,
否则来的节点就设置为红节点,因为每条路径黑节点数相同,如果新来的变为黑,那么整个树都要做调整
如果插入的红节点父亲是黑节点,那么无事发生,但如果父节点也是红,那就违反红黑树性质(红节点的孩子必须是黑节点),需要调整,接下来分两种情况分析
💪1,孩子的叔叔(与父节点相对的另一支)存在且为红,则把叔叔和父亲都设为黑,祖父设为红(依旧保持黑节点数不变),祖父设为红了,还要检查祖父的父亲是否为红,继续向上调整,
💪2,叔叔节点 不存在/存在且为黑,旋转,旋转又分两种情况,单旋和双旋
旋转之后父节点为黑,祖父为红
代码实现:
bool insert(const pair<key,value>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}elsereturn false;}cur = new Node(kv);cur->_col = RED;if (parent->_kv.first <cur->_kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent&&parent->_col==RED){Node* grandparent = parent->_parent;if(grandparent->_left==parent){Node* uncle = grandparent->_right;//uncle存在且为红if (uncle && uncle->_col==RED){parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else//uncle不存在或存在且为黑{if (parent->_left == cur){//g//p//cRotateR(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else if (parent->_right == cur){//g//p//cRotateL(parent);RotateR(grandparent);cur->_col = BLACK;grandparent->_col = RED;}break;} }else{Node* uncle = grandparent->_left;if (uncle && uncle->_col == RED){uncle->_col = parent->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else{if (cur == parent->_right){RotateL(grandparent);grandparent->_col = RED;parent->_col = BLACK;}else{RotateR(parent);RotateL(grandparent);cur->_col = BLACK;grandparent->_col = RED;}break;}}}//把根设为黑_root->_col = BLACK;return true;}void RotateL(Node* parent)
{Node* cur = parent->_right;Node* curleft = cur->_left;Node* pnode = parent->_parent;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (pnode->_right == parent){pnode->_right = cur;}elsepnode->_left = cur;cur->_parent = pnode;}parent->_bf = cur->_bf = 0;
}
void RotateR(Node* parent)
{Node* cur = parent->_left;Node* curright = cur->_right;Node* pnode = parent->_parent;parent->_left = curright;if (curright){curright->_parent = parent;}cur->_right = parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (pnode->_right == parent){pnode->_right = cur;}elsepnode->_left = cur;cur->_parent = pnode;}
}
检测
检测是否为二叉树分两步
1,中序遍历是否是升序
2,是否满足红黑树性质
bool checkcolour(Node* root, int blacknum, int benchblack){//黑节点数目不一样错误if (root == nullptr){if (blacknum != benchblack)return false;return true;}//遇到黑++if (root->_col == BLACK){++blacknum;}//是否连续红节点if (root->_col == RED && root->_parent && root->_parent->_col == RED){cout << "flase" << root->_kv.first;return false;}return checkcolour(root->_left,blacknum,benchblack) && checkcolour(root->_right,blacknum,benchblack);}bool isbalance(){return isbalance(_root);}bool isbalance(Node* root){//空树正确//根不黑直接错误if (root == nullptr)return true;if (root->_col != BLACK)return false;Node* cur = root;int benchblack = 0;while (cur){//确定一条路上的黑节点if (cur->_col == BLACK)++benchblack;cur = cur->_left; }return checkcolour(root,0,benchblack);}