📌 定义:

回调函数是通过函数指针传递给另一个函数的函数,这个被传进去的函数将在某个时刻被“回调”调用。

换句话说:

  • 你定义一个函数 A

  • 把函数 A 的地址(即函数指针)作为参数传给函数 B

  • 函数 B 在合适的时机调用 A(即“回调”)

📍作用:

用于 “动态行为”插件机制自定义逻辑注入,非常常见于库函数、操作系统、图形界面、信号处理等场景。

回调函数 = 把函数指针作为参数传进去,在“合适时机”通过这个指针调用你传进去的函数。

 code

基础code

void menu()
{printf("********************\n");printf("****1.add****2.sub**\n");printf("****3.mul****4.div**\n");printf("****0.exit**********\n");
}
int add(int x, int y)
{return x + y;
}
int sub(int x, int y)
{return x - y;
}
int mul(int x, int y)
{return x * y;
}
int div(int x, int y)
{return x / y;
}
int main()
{menu();int input = 0;int x = 0;int y = 0;int ret = 0;do{printf("输入计算类型->\n");scanf("%d", &input);switch (input){case 1:printf("输入两个计算数字\n");scanf("%d %d", &x, &y);ret = add(x, y);printf("%d\n", ret);break;case 2:printf("输入两个计算数字\n");scanf("%d %d", &x, &y);ret = sub(x, y);printf("%d\n", ret);break;case 3:printf("输入两个计算数字\n");scanf("%d %d", &x, &y);ret = mul(x, y);printf("%d\n", ret);break;case 4:printf("输入两个计算数字\n");scanf("%d %d", &x, &y);ret = div(x, y);printf("%d\n", ret);break;default:printf("输入无效,请重新输入\n");break;}} while (input);return 0;
}

 回调函数示例--------减少冗余code

void menu()
{printf("********************\n");printf("****1.add****2.sub**\n");printf("****3.mul****4.div**\n");printf("****0.exit**********\n");
}
int add(int x, int y)
{return x + y;
}
int sub(int x, int y)
{return x - y;
}
int mul(int x, int y)
{return x * y;
}
int div(int x, int y)
{return x / y;
}
void calcu (int(*pf)(int,int))
{int x = 0;int y = 0;int ret = 0;printf("输入两个计算数字\n");scanf("%d %d", &x, &y);ret = pf(x, y);printf("%d\n", ret);
} 
int main()
{menu();int input = 0;do{printf("输入计算类型->\n");scanf("%d", &input);switch (input){case 1:calcu(add);break;case 2:calcu(sub);break;case 3:calcu(mul);break;case 4:calcu(div);break;default:printf("输入无效,请重新输入\n");break;}} while (input);return 0;
}

函数指针数组的调用形式

void menu()
{printf("********************\n");printf("****1.add****2.sub**\n");printf("****3.mul****4.div**\n");printf("****0.exit**********\n");
}
int add(int x, int y)
{return x + y;
}
int sub(int x, int y)
{return x - y;
}
int mul(int x, int y)
{return x * y;
}
int div(int x, int y)
{return x / y;
}int main()
{menu();int input = 0;int x = 0;int y = 0;int ret = 0;int (*arr[])(int, int) = { 0,add,sub,mul,div };printf("请输入计算类型->");do{scanf("%d", &input);if (input == 0){printf("退出程序");}else if (input >= 1 && input <= 4){printf("请输入两个操作数");scanf("%d %d", &x, &y);/*	for ( int i = 1; i < 5;  i++){ret = arr[i](x, y);printf("%d \n", ret);}*/ret = arr[input](x, y);printf("%d \n", ret);}else{printf("输入错误,请重新输入");}} while (input);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/web/89250.shtml
繁体地址,请注明出处:http://hk.pswp.cn/web/89250.shtml
英文地址,请注明出处:http://en.pswp.cn/web/89250.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手撕设计模式之消息推送系统——桥接模式

手撕设计模式之消息推送系统——桥接模式 1.业务需求 ​ 大家好&#xff0c;我是菠菜啊&#xff0c;好久不见&#xff0c;今天给大家带来的是——桥接模式。老规矩&#xff0c;在介绍这期内容前&#xff0c;我们先来看看这样的需求&#xff1a;我们现在要做一个消息推送系统&…

Java 大厂面试题 -- JVM 垃圾回收机制大揭秘:从原理到实战的全维度优化

最近佳作推荐&#xff1a; Java 大厂面试题 – JVM 面试题全解析&#xff1a;横扫大厂面试&#xff08;New&#xff09; Java 大厂面试题 – 从菜鸟到大神&#xff1a;JVM 实战技巧让你收获满满&#xff08;New&#xff09; Java 大厂面试题 – JVM 与云原生的完美融合&#xf…

图机器学习(9)——图正则化算法

图机器学习&#xff08;9&#xff09;——图正则化算法1. 图正则化方法2. 流形正则化与半监督嵌入3. 神经图学习4. Planetoid1. 图正则化方法 浅层嵌入方法已经证明&#xff0c;通过编码数据点间的拓扑关系可以构建更鲁棒的分类器来处理半监督任务。本质上&#xff0c;网络信息…

视频动态范围技术演进:从SDR到HDR的影像革命

一、动态范围技术基础认知 1.1 人眼视觉特性与动态范围 人眼的动态感知范围可达106:1&#xff08;0.0001-105 cd/m&#xff09;&#xff0c;远超传统显示设备能力。视网膜通过虹膜调节&#xff08;物理孔径&#xff09;与光化学反应&#xff08;光敏蛋白分解&#xff09;实现16…

基于LAMP环境的校园论坛项目

1.配置本地仓库a.修改主机名为自己姓名全拼[rootserver ~]# hostnamectl set-hostname jun [rootserver ~]# bash [rootjun ~]# 运行结果图如下图所示&#xff1a;b.光盘挂载到/mnt目录下[rootjun yum.repos.d]# mount /dev/sr0 /mnt mount: /mnt: WARNING: source write-prote…

在物联网系统中时序数据库和关系型数据库如何使用?

在物联网系统中&#xff0c;时序数据库&#xff08;TSDB&#xff09;和关系型数据库&#xff08;RDBMS&#xff09;的存储顺序设计需要根据数据特性、业务需求和系统架构综合考虑。以下是典型的设计方案和逻辑顺序&#xff1a;1. 常见存储顺序方案 方案一&#xff1a;先写时序数…

django安装、跨域、缓存、令牌、路由、中间件等配置

注意&#xff1a;如果是使用 PyCharm 编程工具就不用创建虚拟化&#xff0c;直接打开 PyCharm 选择新建的目录直接调过下面的步骤11. 项目初始化如果不是用 PyCharm 编辑器就需要手动创建虚拟环境在项目目录cmd&#xff0c;自定义名称的虚拟环境# 激活虚拟环境 python -m venv …

时间的弧线,逻辑的航道——标准单元延迟(cell delay)的根与源

时序弧 在这篇文章中&#xff0c;我们将讨论影响标准单元延迟的因素。在开始讨论之前&#xff0c;我们需要先了解一下什么是时序弧 (Timing Arcs)&#xff1a; 时序弧 (Timing Arcs)&#xff1a; 时序弧代表了信号从一个输入流向一个输出的方向。它存在于组合逻辑和时序逻辑中&…

《透视定轴:CSS 3D魔方中视觉层级的秩序法则》

当CSS的代码编织出一个能自由旋转的3D魔方&#xff0c;六个色彩各异的面在空间中翻转、重叠时&#xff0c;最考验技术的并非旋转动画的流畅度&#xff0c;而是每个面在任意角度下都能保持符合现实逻辑的前后关系。为何有时某个面会突兀地“穿透”另一个面&#xff1f;为何旋转到…

RTL编程中常用的几种语言对比

以下是RTL&#xff08;寄存器传输级&#xff09;编程中常用的几种硬件描述语言&#xff08;HDL&#xff09;及其核心差异的对比分析。RTL编程主要用于数字电路设计&#xff0c;通过描述寄存器间的数据传输和逻辑操作实现硬件功能。以下内容综合了行业主流语言的技术特性与应用场…

前端面试题(HTML、CSS、JavaScript)

目录 一、HTML src与href区别 对html语义化理解 语义化标签有哪些&#xff1f; script中的defer与async区别 行内元素与块级元素有哪些&#xff1f; canvas与svg区别 SEO优化 html5新特性 二、CSS 盒模型 选择器优先级 伪元素与伪类 隐藏元素几种方式 水平/垂直…

Linux-线程控制

线程等待pthread_join()pthread_join 是 Linux 系统中用于线程同步的重要函数&#xff0c;主要作用是等待指定线程结束并回收其资源。基本功能- 阻塞当前调用线程&#xff0c;直到目标线程执行结束。 - 回收目标线程的资源&#xff0c;避免产生“僵尸线程”。 - 可选地获取目标…

RAG优化秘籍:基于Tablestore的知识库答疑系统架构设计

目录一、技术架构设计二、双流程图解析横向架构对比纵向核心流程三、企业级代码实现Python检索核心TypeScript前端接入YAML部署配置四、性能对比验证五、生产级部署方案六、技术前瞻分析附录&#xff1a;完整技术图谱一、技术架构设计 原创架构图 #mermaid-svg-3Ktoc4oH4xlbD6…

i.mx8 RTC问题

项目场景&#xff1a;需要增加外置RTC&#xff0c;保证时间的精准。问题描述&#xff1a;基本情况&#xff0c;外置i2c接口的RTC&#xff0c;注册、读写都正常&#xff0c;但是偶发性重启后&#xff0c;系统时间是2022&#xff0c;rtc时间是1970&#xff0c;都像是恢复了默认时…

数据集相关类代码回顾理解 | utils.make_grid\list comprehension\np.transpose

目录 utils.make_grid list comprehension np.transpose utils.make_grid x_gridutils.make_grid(x_grid, nrow4, padding2) make_grid 函数来自torchvision的utils模块&#xff0c;用于图像数据可视化&#xff0c;将一批图像排列成一个网格。 x_grid&#xff1a;四维图像…

C#中Static关键字解析

本文仅作为参考大佬们文章的总结。 Static关键字是C#语言中一个基础而强大的特性&#xff0c;它能够改变类成员的行为方式和生命周期。本文系统性总结static关键字的各类用法、核心特性、适用场景以及需要注意的问题&#xff0c;以帮助掌握这一重要概念。 一、Static关键字概…

通用综合文字识别联动 MES 系统:OCR 是数据流通的核心

制造业的 MES 系统需实时整合生产数据以调控流程&#xff0c;但车间的工单、物料标签、质检报告等多为纸质或图片形式&#xff0c;传统人工录入不仅滞后&#xff0c;还易出错&#xff0c;导致 MES 系统数据断层。通用综合文字识别借助 OCR 技术&#xff0c;成为连接这些信息与 …

【Linux 学习指南】网络编程基础:从 IP、端口到 Socket 与 TCP/UDP 协议详解

文章目录&#x1f4dd;理解源IP地址和目的IP地址&#x1f320; 认识端口号&#x1f309;端口号范围划分&#x1f309;理解"端口号"和"进程ID"&#x1f309;理解源端口号和目的端口号&#x1f309;理解socket&#x1f320;传输层的典型代表&#x1f309;认识…

React+Next.js+Tailwind CSS 电商 SEO 优化

一、项目背景与技术选型​1. 原始痛点​项目最初基于纯 React 开发&#xff08;SPA 架构&#xff09;&#xff0c;存在三个致命问题&#xff1a;​搜索引擎爬虫无法有效抓取动态渲染的商品详情、分类页内容&#xff1b;​单页面应用 难以实现页面级的 meta 定制&#xff0c;关键…

Process Lasso:提升电脑性能的得力助手

在日常使用电脑的过程中&#xff0c;我们常常会遇到这样的问题&#xff1a;电脑运行缓慢、程序响应迟缓、多任务处理时卡顿不断。这些问题不仅影响工作效率&#xff0c;还让人感到非常烦躁。其实&#xff0c;这些问题很多时候是因为电脑的进程管理不够优化。而Process Lasso正是…