通过 Dify 构建智能助手

  • 1.定义
  • 2.如何使用智能助手
  • 3.添加助手需要的工具
  • 4.配置 Agent
  • 5.配置对话开场白
  • 6.添加文件上传
  • 7.调试与预览
  • 8.应用发布

1.定义

智能助手(Agent Assistant),利用大语言模型的推理能力,能够自主对复杂的人类任务进行 目标规划任务拆解工具调用过程迭代,并在没有人类干预的情况下完成任务。

🌞 Dify 官网:https://dify.ai/zh

2.如何使用智能助手

为了方便快速上手使用,你可以在 “探索” 中找到智能助手的应用模板,添加到自己的工作区,或者在此基础上进行自定义。在全新的 Dify 工作室中,你也可以从零编排一个专属于你自己的智能助手,帮助你完成 财务报表分析撰写报告Logo 设计旅程规划 等任务。

选择智能助手的推理模型,智能助手的任务完成能力取决于模型推理能力,我们建议在使用智能助手时选择推理能力更强的模型系列如 gpt-4 以获得更稳定的任务完成效果。

选择智能助手的推理模型

你可以在 “提示词” 中编写智能助手的指令,为了能够达到更优的预期效果,你可以在指令中明确它的 任务目标工作流程资源和限制 等。

编排智能助手的指令提示词

3.添加助手需要的工具

在 “上下文” 中,你可以添加智能助手可以用于查询的知识库工具,这将帮助它获取外部背景知识。

在 “工具” 中,你可以添加需要使用的工具。工具可以扩展 LLM 的能力,比如联网搜索、科学计算或绘制图片,赋予并增强了 LLM 连接外部世界的能力。Dify 提供了两种工具类型:第一方工具自定义工具

你可以直接使用 Dify 生态提供的第一方内置工具,或者轻松导入自定义的 API 工具(目前支持 OpenAPI / Swagger 和 OpenAI Plugin 规范)。

添加助手需要的工具

工具” 功能允许用户借助外部能力,在 Dify 上创建出更加强大的 AI 应用。例如你可以为智能助理型应用(Agent)编排合适的工具,它可以通过任务推理、步骤拆解、调用工具完成复杂任务。

另外工具也可以方便将你的应用与其他系统或服务连接,与外部环境交互。例如代码执行、对专属信息源的访问等。你只需要在对话框中谈及需要调用的某个工具的名字,即可自动调用该工具。

4.配置 Agent

在 Dify 上为智能助手提供了 Function calling(函数调用)和 ReAct 两种推理模式。已支持 Function Call 的模型系列如 gpt-3.5 / gpt-4 拥有效果更佳、更稳定的表现,尚未支持 Function calling 的模型系列,我们支持了 ReAct 推理框架实现类似的效果。

在 Agent 配置中,你可以修改助手的迭代次数限制。

Function Calling 模式

ReAct 模式

5.配置对话开场白

你可以为智能助手配置一套会话开场白和开场问题,配置的对话开场白将在每次用户初次对话中展示助手可以完成什么样的任务,以及可以提出的问题示例。

配置会话开场白和开场问题

6.添加文件上传

部分多模态 LLM 已原生支持处理文件,例如 Claude 3.5 Sonnet 或 Gemini 1.5 Pro。你可以在 LLM 的官方网站了解文件上传能力的支持情况。

选择具备读取文件的 LLM,开启 “文档” 功能。无需复杂配置即可让当前 Chatbot 具备文件识别能力。

7.调试与预览

编排完智能助手之后,你可以在发布成应用之前进行调试与预览,查看助手的任务完成效果。

调试与预览

8.应用发布

应用发布为 Webapp

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/pingmian/88809.shtml
繁体地址,请注明出处:http://hk.pswp.cn/pingmian/88809.shtml
英文地址,请注明出处:http://en.pswp.cn/pingmian/88809.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

破局与重构:文心大模型开源的产业变革密码

——从技术垄断到生态共享的战略转型深度解析 引言:一场静悄悄的革命 2024年,当百度宣布文心大模型4.5系列全面开源时,这不仅仅是一次技术发布,更是一场关于AI产业未来走向的战略博弈。在全球AI竞争白热化的当下,开源意…

7.15 窗口函数 | 二分 | 位运算

05.071.位运算2.位图class Solution { public:int exchangeBits(int num) {bitset<33> bitNum(num);for (int i 0; i < 16; i){bitNum[32] bitNum[2*i];bitNum[2*i] bitNum[2*i1];bitNum[2*i1] bitNum[32];}return (int)bitNum.to_ulong();} };577.员工奖金select…

Windows 安装配置Claude Code

文章目录1.安装node.js2.安装 Claude Code3.测试claude1.安装node.js https://nodejs.org/en/download/ 一路回车即可顺利安装完成。 再键盘按下Win R快捷键&#xff0c;输入cmd&#xff0c;然后回车启动命令行窗口。分别输入node -v和npm -v来查看node.js版本和npm版本。 环…

C++动态数组vector

一、为什么要用vector而不是数组 虽有嘉肴&#xff0c;弗食&#xff0c;不知其旨也。______,____,____________。 简单来说就是节约内存&#xff0c;不容易RE 二、如何使用vector 既谓之数组&#xff0c;则用之如数组 1.定义 vector<数据类型>名称 vector<int …

14.使用GoogleNet/Inception网络进行Fashion-Mnist分类

14.1 GoogleNet网络结构设计import torch from torch import nn from torch.nn import functional as F from torchsummary import summary class Inception(nn.Module):def __init__(self, in_channels,c1,c2,c3,c4,**kwargs):super(Inception,self).__init__(**kwargs)#第一条…

NE综合实验2:RIP 与 OSPF 动态路由精细配置、FTPTELNET 服务搭建及精准访问限制

NE综合实验2&#xff1a;RIP 与 OSPF 动态路由精细配置、FTPTELNET 服务搭建及精准访问限制 涉及的协议可以看我之前的文章&#xff1a; RIP实验 OSPF协议&#xff1a;核心概念与配置要点解析 ACL协议&#xff1a;核心概念与配置要点解析 基于OSPF动态路由与ACL访问控制的网…

Android 插件化实现原理详解

Android 插件化实现原理详解 插件化技术是Android开发中一项重要的高级技术&#xff0c;它允许应用动态加载和执行未安装的APK模块。以下是插件化技术的核心实现原理和关键技术点&#xff1a; 一、插件化核心思想宿主与插件&#xff1a; 宿主(Host)&#xff1a;主应用APK&#…

空间智能-李飞飞团队工作总结(至2025.07)

李飞飞团队在空间智能(Spatial Intelligence)领域的研究自2024年起取得了一系列突破性进展,其里程碑成果可归纳为以下核心方向: 一、理论框架提出与定义(2024年) 1、空间智能概念系统化 a.定义: 李飞飞首次明确空间智能为“机器在3D空间和时间中感知、推理和行动的能…

【算法深练】BFS:“由近及远”的遍历艺术,广度优先算法题型全解析

前言 宽度优先遍历BFS与深度优先遍历DFS有本质上的区别&#xff0c;DFS是一直扩到低之后找返回&#xff0c;而BFS是一层层的扩展就像剥洋葱皮一样。 通常BFS是将所有路径同时进行尝试&#xff0c;所以BFS找到的第一个满足条件的位置&#xff0c;一定是路径最短的位置&#xf…

ZW3D 二次开发-创建球体

使用中望3d用户函数 cvxPartSphere 创建球体 函数定义: ZW_API_C evxErrors cvxPartSphere(svxSphereData *Sphere, int *idShape); typedef struct svxSphereData {evxBoolType Combine; /**<@brief combination method */svxPoint Center; /**<@brief sphere ce…

艺术总监的构图“再造术”:用PS生成式AI,重塑照片叙事框架

在视觉叙事中&#xff0c;我们常常面临一个核心的“对立统一”&#xff1a;一方面是**“被捕捉的瞬间”&#xff08;The Captured Moment&#xff09;&#xff0c;即摄影师在特定时间、特定地点所记录下的客观现实&#xff1b;另一方面是“被期望的叙事”**&#xff08;The Des…

ChatGPT无法登陆?分步排查指南与解决方案

ChatGPT作为全球领先的AI对话工具&#xff0c;日均处理超百万次登录请求&#xff0c;登陆问题可能导致用户无法正常使用服务&#xff0c;影响工作效率或学习进度。 无论是显示「网络错误」「账号未激活」&#xff0c;还是持续加载无响应&#xff0c;本文将从网络连接、账号状态…

用Joern执行CPGQL找到C语言中不安全函数调用的流程

1. 引入 静态应用程序安全测试&#xff08;Static application security testing&#xff09;简称SAST&#xff0c;是透过审查程式源代码来识别漏洞&#xff0c;提升软件安全性的作法。 Joern 是一个强大的开源静态应用安全测试&#xff08;SAST&#xff09;工具&#xff0c;专…

读文章 Critiques of World model

论文名称&#xff1a;对世界模型的批判 作者单位&#xff1a; CMU&#xff0c; UC SD 原文链接&#xff1a;https://arxiv.org/pdf/2507.05169 摘要&#xff1a; 世界模型&#xff08;World Model&#xff09;——即真实世界环境的算法替代物&#xff0c;是生物体所体验并与之…

利用docker部署前后端分离项目

后端部署数据库:redis部署:拉取镜像:doker pull redis运行容器:docker run -d -p 6379:6379 --name my_redis redismysql部署:拉取镜像:docker pull mysql运行容器:我这里3306被占了就用的39001映射docker run -d -p 39001:3306 -v /home/mysql/conf:/etc/mysql/conf.d -v /hom…

YOLOv11调参指南

YOLOv11调参 1. YOLOv11参数体系概述 YOLOv11作为目标检测领域的前沿算法&#xff0c;其参数体系可分为四大核心模块&#xff1a; 模型结构参数&#xff1a;决定网络深度、宽度、特征融合方式训练参数&#xff1a;控制学习率、优化器、数据增强策略检测参数&#xff1a;影响预测…

云原生核心技术解析:Docker vs Kubernetes vs Docker Compose

云原生核心技术解析&#xff1a;Docker vs Kubernetes vs Docker Compose &#x1f6a2;☸️⚙️ 一、云原生核心概念 ☁️ 云原生&#xff08;Cloud Native&#xff09; 是一种基于云计算模型构建和运行应用的方法论&#xff0c;核心目标是通过以下技术实现弹性、可扩展、高可…

keepalive模拟操作部署

目录 keepalived双机热备 一、配置准备 二、配置双机热备&#xff08;基于nginx&#xff09; web1端 修改配置文件 配置脚本文件 web2端 修改配置文件 配置脚本文件 模拟检测 开启keepalived服务 访问结果 故障模拟 中止nginx 查看IP 访问浏览器 重启服务后…

Java 中的 volatile 是什么?

&#x1f449; volatile &#xff1a;不稳定的 英[ˈvɒlətaɪl] 美[ˈvɑːlətl] adj. 不稳定的;<计>易失的;易挥发的&#xff0c;易发散的;爆发性的&#xff0c;爆炸性的;易变的&#xff0c;无定性的&#xff0c;无常性的;短暂的&#xff0c;片刻的;活泼的&#xff…

MongoDB性能优化实战指南:原理、实践与案例

MongoDB性能优化实战指南&#xff1a;原理、实践与案例 在大规模数据存储与查询场景下&#xff0c;MongoDB凭借其灵活的文档模型和水平扩展能力&#xff0c;成为众多互联网及企业级应用的首选。然而&#xff0c;在生产环境中&#xff0c;随着数据量和并发的增长&#xff0c;如何…