引言

在自动化与智能体浪潮中,Trae 以“开箱即用、所见即所得”的工具编排体验,成为个人与团队落地 AI 工作流的高效选择。本篇将以 Trae 为主角,展示如何通过最少配置完成与 Bright Data MCP 的对接,并快速构建一个可用、可观测、可扩展的抓取型智能体。
在这里插入图片描述

文章目录

    • 引言
    • Trae 与 Bright Data MCP 简介
    • 与自动化工具 Trae 集成
      • 第一步:获取 Bright Data MCP 的 JSON 配置文件
        • JSON 配置文件核心结构解析(示例)
      • 第二步:在 Trae 中导入 MCP 配置并建立连接
      • 第三步:测试 MCP 调用是否生效
      • 集成注意事项
    • 结语

Trae 与 Bright Data MCP 简介

  • Trae:面向开发者与创作者的自动化与智能体平台,原生支持 MCP(Model Context Protocol),提供可视化工具管理、权限隔离、运行日志与一键化部署。你可以把第三方能力以“工具”接入,再在“智能体”中编排调用。
  • Bright Data MCP:由 Bright Data 提供的 MCP Server,将其合规的数据采集与网络访问能力标准化为工具(如 search_engine_scraper、proxy_manager、web_unblocker),便于在合法前提下完成搜索聚合与网页结构化提取。

优势速览(为什么选择 Trae + Bright Data MCP)

  • 一键导入官方 JSON,0 成本上手
  • 智能体内工具链可组合、可复用
  • 全链路可观测,便于调试与迭代
  • 合规抓取,重视隐私与平台规则

与自动化工具 Trae 集成

在 Trae 中集成 Bright Data MCP 时,通过官方提供的 JSON 配置文件可大幅简化流程。以下是基于 JSON 配置文件的完整集成步骤:

第一步:获取 Bright Data MCP 的 JSON 配置文件

登录 Bright Data 控制台:进入 Bright Data MCP 管理页面,在左侧导航栏选择“MCP”;
如下图所示,复制JSON配置文件
在这里插入图片描述

JSON 配置文件核心结构解析(示例)

导出的配置文件包含调用 MCP API 所需的全部参数,关键字段说明:

{"mcpServers": {"Bright Data": {"command": "npx","args": ["@brightdata/mcp"],"env": {"API_TOKEN": "你的API"}}}
}

第二步:在 Trae 中导入 MCP 配置并建立连接

  1. 打开 Trae AI功能管理:打开 Trae 客户端,点击右上角的齿轮图标;
    在这里插入图片描述

  2. 选择手动添加“MCP”:选择“MCP”,点击“手动添加”;
    在这里插入图片描述

  3. 导入 JSON 配置文件:粘贴刚才复制的JSON文件,点击“确定”;在这里插入图片描述

  4. 检验:如下图所示,就是配置好了
    在这里插入图片描述

  5. 创建“智能体”:选择“智能体”,点击“创建”;
    在这里插入图片描述
    在“工具”那里选择我们刚才创建好的MCP;
    在这里插入图片描述

下面是一个详细的提示词示例:

一、角色定位
你是专业、合规的 Google 搜索结果抓取智能体,专注于精准提取、结构化呈现 Google 搜索结果信息。依托 Bright Data 等合规数据采集工具,可覆盖自然搜索结果、广告、精选摘要、知识面板等多类型内容,支持按关键词、地区、时间等参数定制抓取,为用户提供全面、实时的搜索结果聚合服务,助力信息检索与分析决策。
二、沟通风格
专业严谨:使用规范的搜索技术术语(如 “精选摘要”“知识面板”“反爬机制”),精准描述结果属性与抓取逻辑,体现数据专业性。
透明清晰:主动说明抓取范围、限制条件(如 “最多支持 10 页结果”“实时结果可能存在 5-10 分钟延迟”),让用户明确结果边界。
友好适配:以简洁语言解读复杂结果(如用 “广告结果已单独标记,与自然结果区分” 替代技术化表述),降低信息理解门槛。
三、工作流程
用户需求解析
与用户互动确认核心需求:明确搜索关键词(支持精确匹配、排除语法等高级搜索指令)、目标地区 / 语言(如 “美国英语”“德国德语”)、时间范围(如 “过去 7 天”“2024-2025 年”)、结果页数(默认 1-3 页,最大 10 页)及特殊需求(如 “仅提取自然结果”“优先展示视频结果”)。
合规抓取配置
基于需求配置抓取参数:通过 Bright Data 代理池模拟正常用户 IP,设置合理请求间隔(单关键词单次搜索间隔≥15 秒),启用反爬规避策略(如随机 User-Agent、动态请求头),确保符合 Google robots 协议及平台规则。
多维度结果提取
借助工具精准抓取多类型结果:
基础结果:提取标题、完整 URL、摘要文本、来源域名、发布时间、页面排名。
特殊结果:单独标记广告(含 “Sponsored” 标识)、提取精选摘要(文本 / 列表 / 表格格式)、知识面板(主体信息、关联图片链接)、相关搜索建议(按展示顺序排列)。
数据校验与结构化
对抓取结果进行二次校验:验证链接有效性(标记 404 / 失效链接)、去重重复结果(保留最高排名项)、模糊处理隐私信息(如手机号、住址用 “*” 替换)。按 “类型 - 排名 - 核心信息” 逻辑结构化数据,区分自然结果、广告、特殊模块。
输出适配呈现
按用户需求提供多格式输出:默认文本结构化(分模块标注结果类型、排名及核心信息);支持表格格式(含 “排名、标题、链接、来源、类型” 列)或 JSON 格式(含搜索参数 meta 与结果数组 results),结果末尾附抓取时间与完整性说明。
反馈迭代优化
收集用户反馈(如 “结果遗漏某类型内容”“链接失效过多”),针对性调整抓取策略(如优化页面解析规则、扩大代理池覆盖范围),持续提升结果准确性与完整性。
四、工具偏好
核心采集工具:优先使用 Bright Data MCP 的 “search_engine_scraper” 功能抓取 Google 搜索结果页面;借助 “proxy_manager” 管理合规代理池,规避 IP 限制;通过 “web_unblocker” 突破基础反爬机制。
解析辅助工具:使用 “structured_data_extractor” 提取页面结构化信息(如标题、摘要标签),确保结果格式统一;用 “link_validator” 实时验证 URL 有效性。
五、规则规范
合规优先:严格遵循 Google 平台规则,不绕过验证码、不超频率请求(单日单关键词抓取≤3 次),不抓取禁止页面(如登录页、付费内容);尊重版权,提取内容仅用于信息聚合,注明来源标识。
数据保真:确保结果原始性,不篡改标题、摘要或广告标签;实时更新动态信息(如 “此价格为抓取时快照,可能随页面更新变化”),避免误导用户。
隐私保护:自动识别并处理结果中的个人敏感信息(身份证号、住址等),模糊化关键字符;不存储或二次传播用户搜索关键词及结果数据。
透明说明:主动告知结果局限性(如 “受地区限制,部分本地结果可能未展示”“页数过多可能降低提取精度”),让用户合理评估信息价值。
  1. “完成”:创建好了是这样的。
    在这里插入图片描述

第三步:测试 MCP 调用是否生效

  1. 输入问题:对话框直接输入“用google引擎搜索Python教程,将结果整合成csv文件,保存到文件夹***”;
    在这里插入图片描述
  2. 运行:我们可以看到它成功调用了MCP:
    在这里插入图片描述
  3. “结果”:最后打开CSV文件,可以发现成功了。
    在这里插入图片描述

集成注意事项

  • 配置文件版本兼容:确保导出的 JSON 配置文件版本与 Trae 支持的格式一致(Bright Data 最新配置文件默认兼容 Trae 3.0+ 版本);
  • 参数覆盖规则:Trae 中可手动修改导入的配置参数(如临时调整 countryus),修改后不会影响原始 JSON 文件;
  • 日志与调试:通过 Trae“运行日志”面板查看请求详情(包括完整 URL、headers、响应码),便于排查 401 未授权504 超时 等问题;
  • 批量调用优化:若需高频调用,在 JSON 配置中添加 batch_size 字段(如 {"batch_size": 5}),减少请求次数。

结语

Trae 让复杂的工具编排变得简单透明,而 Bright Data MCP 为数据采集提供了合规可靠的能力。通过将两者结合,你可以在短时间内搭建可用的抓取型智能体,并在日志与权限的护栏下快速迭代。期待你也用 Trae 打造你的专属工作流,分享更多实践与灵感。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/diannao/98405.shtml
繁体地址,请注明出处:http://hk.pswp.cn/diannao/98405.shtml
英文地址,请注明出处:http://en.pswp.cn/diannao/98405.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据Spark(六十三):RDD-Resilient Distributed Dataset

文章目录 RDD-Resilient Distributed Dataset 一、RDD五大特性 二、RDD创建方式 RDD-Resilient Distributed Dataset 在 Apache Spark 编程中,RDD(Resilient Distributed Dataset,弹性分布式数据集)是 Spark Core 中最基本的数…

java,通过SqlSessionFactory实现动态表明的插入和查询(适用于一个版本一个表的场景)

1,测试实体类package org.springblade.sample.test;import com.baomidou.mybatisplus.annotation.TableName; import lombok.Data;/*** Author: 肖扬* CreateTime: 2025-09-05* Description: SqlSessionFactoryTest测试* Version: 1.0*/ Data TableName("session_factory_…

鹧鸪云光储流程系统全新升级:视频指引与分阶段模块使用指南

鹧鸪云光储流程系统近日完成重要更新,全面优化了操作指引体系,为用户带来更高效、直观的使用体验。本次升级重点推出了全套功能操作视频,并明确了不同业务阶段的核心模块使用指南,助力用户快速上手、提升工作效率。全覆盖视频操作…

ChatGPT 协作调优:把 SQL 查询从 5s 优化到 300ms 的全过程

ChatGPT 协作调优:把 SQL 查询从 5s 优化到 300ms 的全过程 🌟 Hello,我是摘星! 🌈 在彩虹般绚烂的技术栈中,我是那个永不停歇的色彩收集者。 🦋 每一个优化都是我培育的花朵,每一个…

复杂计算任务的智能轮询优化实战

目录 复杂计算任务的智能轮询优化实战 一、轮询方法介绍 二、三种轮询优化策略 1、用 setTimeout 替代 setInterval 2、轮询时间指数退避 3、标签页可见性检测(Page Visibility API) 三、封装一个简单易用的智能轮询方法 四、结语 作者&#xff…

Java开发中常用CollectionUtils方式,以及Spring中CollectionUtils常用方法示例

场景 Java开发中常用的CollectionUtils 一、Spring Framework的CollectionUtils 包路径&#xff1a;org.springframework.util.CollectionUtils 核心方法&#xff1a; isEmpty(Collection<?> coll) List<String> list null; boolean empty CollectionUtil…

人工智能学习:Transformer结构(文本嵌入及其位置编码器)

一、输入部分介绍 输入部分包含: 编码器源文本嵌入层及其位置编码器 解码器目标文本嵌入层及其位置编码器 在transformer的encoder和decoder的输入层中,使用了Positional Encoding,使得最终的输入满足: 这里,input_embedding是通过常规embedding层,将每一个词的…

⸢ 肆 ⸥ ⤳ 默认安全建设方案:c-1.增量风险管控

&#x1f44d;点「赞」&#x1f4cc;收「藏」&#x1f440;关「注」&#x1f4ac;评「论」 在金融科技深度融合的背景下&#xff0c;信息安全已从单纯的技术攻防扩展至架构、合规、流程与创新的系统工程。作为一名从业十多年的老兵&#xff0c;将系统阐述数字银行安全体系的建设…

第二课、熟悉Cocos Creator 编辑器界面

本文主要介绍Cocos Creator 编辑器界面中几个常规的面板功能&#xff0c;让新手了解编辑器界面中常规的面板功能&#xff0c;更好的使用Cocos Creator 编辑器。一、编辑器界面常规面板划分Cocos Creater编辑器默认样式如上&#xff0c;主要包含&#xff1a;1、工具栏&#xff0…

Elixir通过Onvif协议控制IP摄像机,扩展ExOnvif的摄像头连续移动功能 ContinuousMove

Elixir 通过Onvif 对IP设备进行控制时&#xff0c;可以使用 ExOnvif 库。ExOnvif官方文档 此文章仅提供了ContinuousMove的控制方式及示例。 Elixir Onvif协议控制IP设备的其他命令&#xff0c;可以参考以下链接 绝对移动 【AbsoluteMove】 调用指定预置位 【GotoPreset】 …

android studio JNI 环境配置实现 java 调用 c/c++

1、在 app 级的 build.gradle 文件配置两个地方 android{ defaultConfig{ // 在 defaultConfig 里配置下面代码 externalNativeBuild { cmake { cppFlags "-frtti -fexceptions"//添加对 c 的异常处理支持 …

静态时序分析详解之时序路径类型

目录 一、概览 二、时序路径 2.1 数据路径 2.2 时钟路径 2.3 时钟门控路径 2.4 异步路径 2.5 关键路径 2.6 False路径 2.7 单周期路径 2.8 多周期路径 2.9 最长路径和最短路径 三、参考资料 一、概览 ​ ​静态时序分析通过模拟最差条件下分析所有的时序路径&am…

SpringBoot埋点功能技术实现方案深度解析:架构设计、性能优化与扩展性实践

SpringBoot埋点功能技术实现方案深度解析&#xff1a;架构设计、性能优化与扩展性实践 1. 原理剖析与技术实现细节 1.1 埋点技术基本原理 埋点&#xff08;Tracking&#xff09;是通过在代码中植入特定逻辑&#xff0c;收集用户行为数据、系统运行状态和业务指标的技术手段。在…

自建prometheus监控腾讯云k8s集群

自建prometheus监控腾讯云k8s集群 使用场景 k8s集群&#xff08;腾讯云容器服务&#xff09; promtheus (外部自建服务) 腾讯云提供了容器内部自建 Prometheus 监控 TKE 集群的文档&#xff0c;参考。 当前的环境promethues建在k8S外的云服务器上&#xff0c;与上面链接文…

2025高教社国赛数学建模C题参考论文(含模型和代码)

2025 年高教社杯大学生数学建模竞赛 C 题参考论文 目录 NIPT 的时点选择与胎儿的异常判定 摘要 1 问题重述 2 问题分析 2.1 问题 1 分析 2.2 问题 2 分析 2.3 问题 3 分析 2.4 问题 4 分析 3 模型假设与符号定义 3.1 模型假设 4. 孕周在 10-25 周内检测有…

iOS开发环境搭建及打包流程

一、下载xcode 直接去苹果商店的appstore下载就行 二、clone项目 1.登录xcode苹果账号或对应代码仓库账号 2.clone项目 3.安装设备真机环境&#xff08;未安装过的话&#xff09; 三.安装cocoapods 1. 检查并更新 Ruby 环境 CocoaPods 是基于 Ruby 编写的&#xff0c;因此…

数据结构之链表(单向链表与双向链表)

一&#xff0c;链表描述链表是一种常见的重要的数据结构,是动态地进行存储分配的一种结构。常用于需存储的数据的数目无法事先确定。1.链表的一般结构链表的组成&#xff1a; 头指针&#xff1a;存放一个地址&#xff0c;该地址指向一个元素 结点&#xff1a;用户需要的实际数据…

从反向代理到负载均衡:Nginx + Tomcat 构建高可用Web服务架构

从反向代理到负载均衡&#xff1a;Nginx Tomcat 构建高可用Web服务架构 文章目录从反向代理到负载均衡&#xff1a;Nginx Tomcat 构建高可用Web服务架构一、基础铺垫&#xff1a;什么是反向代理&#xff1f;1.1 反向代理的核心原理1.2 Nginx反向代理实战配置步骤1&#xff1a…

Simulink中使用Test sequence单元测试

一、Tips 在对simulink模型进行Test sequence单元测试时&#xff0c;如果采取书写测试用例的话&#xff0c;有以下操作。 1、使用”fprintf(‘time%f\n’, t);“来打印当前step的时间&#xff1b; 二、数据类型转换 1、double类型 -> boolean类型 clc; clear all;% 1、doubl…

【mysql】SQL自连接:什么时候需要,什么时候不需要?

SQL自连接:什么时候需要,什么时候不需要? 通过具体示例和对比解析,彻底搞懂SQL自连接的使用场景 在处理SQL查询时,尤其是当表中存在自引用关系(如referee_id引用同一张表的id)时,很多开发者会疑惑:这个查询到底需不需要自连接?本文将通过多个具体示例,带你彻底弄清何…