很至关重要的一章:
8.3.1. 学习语言模型
8.3.2. 马尔可夫模型与n元语法
n元语法看的序列长度是固定的, 存储的序列长是有限且可控的,使用统计方法的时候通常使用这个模型!!!统计方法!!!
8.3.3. 自然语言统计
我们看看在真实数据上如果进行自然语言统计。 根据 8.2节中介绍的时光机器数据集构建词表, 并打印前10个最常用的(频率最高的)单词。
import random
import torch
from d2l import torch as d2ltokens = d2l.tokenize(d2l.read_time_machine())
# 因为每个文本行不一定是一个句子或一个段落,因此我们把所有文本行拼接到一起
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]输出:
[('the', 2261),('i', 1267),('and', 1245),('of', 1155),('a', 816),('to', 695),('was', 552),('in', 541),('that', 443),('my', 440)]
在自然语言处理(NLP)、文本分析和机器学习领域,"corpus"(语料库)是指一个大规模的文本集合。
正如我们所看到的,最流行的词看起来很无聊, 这些词通常被称为停用词(stop words),因此可以被过滤掉。 尽管如此,它们本身仍然是有意义的,我们仍然会在模型中使用它们。 此外,还有个明显的问题是词频衰减的速度相当地快。 例如,最常用单词的词频对比,第10个还不到第1个的1/5。 为了更好地理解,我们可以画出的词频图:
freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',xscale='log', yscale='log')
#token是已经排过序的,而且这里的token还用了log处理,代表的是80%出现都是20%的词,因为这里log是线性关系。
建模的意义在于说明单纯平滑化的的不合理性:
bigram_tokens = [pair for pair in zip(corpus[:-1], corpus[1:])]
#这里是直接打包成一个zip,corpus[:-1]是把最后一个拿掉,corpus[1:]是从1才开始,每一次拿到就是元素和元素后面一个
bigram_vocab = d2l.Vocab(bigram_tokens)
bigram_vocab.token_freqs[:10]输出:
[(('of', 'the'), 309),(('in', 'the'), 169),(('i', 'had'), 130),(('i', 'was'), 112),(('and', 'the'), 109),(('the', 'time'), 102),(('it', 'was'), 99),(('to', 'the'), 85),(('as', 'i'), 78),(('of', 'a'), 73)]
这里值得注意:在十个最频繁的词对中,有九个是由两个停用词组成的, 只有一个与“the time”有关。 我们再进一步看看三元语法的频率是否表现出相同的行为方式。
这里稍微提一下这个负数在list中的使用,一般表示的就是倒数,:-2就是一直到倒数第二个元素。
trigram_tokens = [triple for triple in zip(corpus[:-2], corpus[1:-1], corpus[2:])]
#这里就是三元了
trigram_vocab = d2l.Vocab(trigram_tokens)
trigram_vocab.token_freqs[:10]输出:
[(('the', 'time', 'traveller'), 59),(('the', 'time', 'machine'), 30),(('the', 'medical', 'man'), 24),(('it', 'seemed', 'to'), 16),(('it', 'was', 'a'), 15),(('here', 'and', 'there'), 15),(('seemed', 'to', 'me'), 14),(('i', 'did', 'not'), 14),(('i', 'saw', 'the'), 13),(('i', 'began', 'to'), 13)]
最后,我们直观地对比三种模型中的词元频率:一元语法、二元语法和三元语法。
bigram_freqs = [freq for token, freq in bigram_vocab.token_freqs]
trigram_freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot([freqs, bigram_freqs, trigram_freqs], xlabel='token: x',ylabel='frequency: n(x)', xscale='log', yscale='log',legend=['unigram', 'bigram', 'trigram'])
这张图非常令人振奋!原因有很多:
-
除了一元语法词,单词序列似乎也遵循齐普夫定律, 尽管公式 (8.3.7)中的指数更小 (指数的大小受序列长度的影响);
-
词表中元组的数量并没有那么大,这说明语言中存在相当多的结构, 这些结构给了我们应用模型的希望;
-
很多元组很少出现,这使得拉普拉斯平滑非常不适合语言建模。 作为代替,我们将使用基于深度学习的模型。
8.3.4. 读取长序列数据
8.3.4.1. 随机采样
在随机采样中,每个样本都是在原始的长序列上任意捕获的子序列。 在迭代过程中,来自两个相邻的、随机的、小批量中的子序列不一定在原始序列上相邻。 对于语言建模,目标是基于到目前为止我们看到的词元来预测下一个词元, 因此标签是移位了一个词元的原始序列。
下面的代码每次可以从数据中随机生成一个小批量。 在这里,参数batch_size
指定了每个小批量中子序列样本的数目, 参数num_steps
是每个子序列中预定义的时间步数。
为了解决原本太多冗余的序列对的问题,深度学习的分割又有可能覆盖不了所有序列对,因此核心思想在于随机起始去取T长的序列,下面这个代码挺刁的,可以看看写的非常简洁。
def seq_data_iter_random(corpus, batch_size, num_steps): #@save ns类似于tao 每次取多长"""使用随机抽样生成一个小批量子序列"""# 从随机偏移量开始对序列进行分区,随机范围包括num_steps-1corpus = corpus[random.randint(0, num_steps - 1):]# 减去1,是因为我们需要考虑标签是后一位# random.randint(a, b):生成一个在 a 和 b 之间(包括 a 和 b)的随机整数。num_subseqs = (len(corpus) - 1) // num_steps# 长度为num_steps的子序列的起始索引initial_indices = list(range(0, num_subseqs * num_steps, num_steps))# 在随机抽样的迭代过程中,# 来自两个相邻的、随机的、小批量中的子序列不一定在原始序列上相邻random.shuffle(initial_indices)#shuffle一下保证每次取的序列是随机的def data(pos):# 返回从pos位置开始的长度为num_steps的序列return corpus[pos: pos + num_steps]num_batches = num_subseqs // batch_size #计算有多少次batchfor i in range(0, batch_size * num_batches, batch_size):# 在这里,initial_indices包含子序列的随机起始索引 为了每次能把一个batch拿出来initial_indices_per_batch = initial_indices[i: i + batch_size]X = [data(j) for j in initial_indices_per_batch]Y = [data(j + 1) for j in initial_indices_per_batch]yield torch.tensor(X), torch.tensor(Y)
下面我们生成一个从0到34的序列。 假设批量大小为2,时间步数为5,这意味着可以生成35-1/5=6个“特征-标签”子序列对。 如果设置小批量大小为2,我们只能得到3个小批量。
my_seq = list(range(35))
for X, Y in seq_data_iter_random(my_seq, batch_size=2, num_steps=5):print('X: ', X, '\nY:', Y)输出:
X: tensor([[13, 14, 15, 16, 17],[28, 29, 30, 31, 32]])
Y: tensor([[14, 15, 16, 17, 18],[29, 30, 31, 32, 33]])
X: tensor([[ 3, 4, 5, 6, 7],[18, 19, 20, 21, 22]])
Y: tensor([[ 4, 5, 6, 7, 8],[19, 20, 21, 22, 23]])
X: tensor([[ 8, 9, 10, 11, 12],[23, 24, 25, 26, 27]])
Y: tensor([[ 9, 10, 11, 12, 13],[24, 25, 26, 27, 28]])
8.3.4.2. 顺序分区
在迭代过程中,除了对原始序列可以随机抽样外, 我们还可以保证两个相邻的小批量中的子序列在原始序列上也是相邻的。 这种策略在基于小批量的迭代过程中保留了拆分的子序列的顺序,因此称为顺序分区。
def seq_data_iter_sequential(corpus, batch_size, num_steps): #@save"""使用顺序分区生成一个小批量子序列"""# 从随机偏移量开始划分序列offset = random.randint(0, num_steps)num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_sizeXs = torch.tensor(corpus[offset: offset + num_tokens])Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)num_batches = Xs.shape[1] // num_stepsfor i in range(0, num_steps * num_batches, num_steps):X = Xs[:, i: i + num_steps]Y = Ys[:, i: i + num_steps]yield X, Y
基于相同的设置,通过顺序分区读取每个小批量的子序列的特征X
和标签Y
。 通过将它们打印出来可以发现: 迭代期间来自两个相邻的小批量中的子序列在原始序列中确实是相邻的。
for X, Y in seq_data_iter_sequential(my_seq, batch_size=2, num_steps=5):print('X: ', X, '\nY:', Y)输出:
X: tensor([[ 0, 1, 2, 3, 4],[17, 18, 19, 20, 21]])
Y: tensor([[ 1, 2, 3, 4, 5],[18, 19, 20, 21, 22]])
X: tensor([[ 5, 6, 7, 8, 9],[22, 23, 24, 25, 26]])
Y: tensor([[ 6, 7, 8, 9, 10],[23, 24, 25, 26, 27]])
X: tensor([[10, 11, 12, 13, 14],[27, 28, 29, 30, 31]])
Y: tensor([[11, 12, 13, 14, 15],[28, 29, 30, 31, 32]])
现在,我们将上面的两个采样函数包装到一个类中, 以便稍后可以将其用作数据迭代器。
class SeqDataLoader: #@save"""加载序列数据的迭代器"""def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):if use_random_iter:self.data_iter_fn = d2l.seq_data_iter_randomelse:self.data_iter_fn = d2l.seq_data_iter_sequentialself.corpus, self.vocab = d2l.load_corpus_time_machine(max_tokens)self.batch_size, self.num_steps = batch_size, num_stepsdef __iter__(self):return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)
最后,我们定义了一个函数load_data_time_machine
, 它同时返回数据迭代器和词表, 因此可以与其他带有load_data
前缀的函数 (如 3.5节中定义的 d2l.load_data_fashion_mnist
)类似地使用。
def load_data_time_machine(batch_size, num_steps, #@saveuse_random_iter=False, max_tokens=10000):"""返回时光机器数据集的迭代器和词表"""data_iter = SeqDataLoader(batch_size, num_steps, use_random_iter, max_tokens)return data_iter, data_iter.vocab
8.3.5. 小结
-
语言模型是自然语言处理的关键。
-
元语法通过截断相关性,为处理长序列提供了一种实用的模型。
-
长序列存在一个问题:它们很少出现或者从不出现。
-
齐普夫定律支配着单词的分布,这个分布不仅适用于一元语法,还适用于其他元语法。
-
通过拉普拉斯平滑法可以有效地处理结构丰富而频率不足的低频词词组。
-
读取长序列的主要方式是随机采样和顺序分区。在迭代过程中,后者可以保证来自两个相邻的小批量中的子序列在原始序列上也是相邻的。