Machine Learning Q and AI 中文译名 大模型技术30讲,主要总结了大模型相关的技术要点,结合学术和工程化,对LLM从业者来说,是一份非常好的学习实践技术地图.

本文是Machine Learning Q and AI 读书笔记的第3篇,对应原书第三章 《小样本学习》.

TL;DR

小样本学习,其实就是Few-Shot, 要注意,这里讨论的的Few-Shot不是提示词工程(Prompt Engineering)范畴内的.

Few-Shot

Few-shot learning is a flavor of supervised learning for small training sets with a very small example-to-class ratio. In regular supervised learning, we train models by iterating over a training set where the model always sees a fixed set of classes. In few shot learning, we are working on a support set from which we create multiple training tasks to assemble training episodes where each training task consists of different classes.

少样本学习(Few-shot learning)是一种针对小规模训练集的监督学习方法,其样本与类别比例极低。在传统的监督学习中,我们通过迭代训练集来训练模型,模型总是面对固定的类别集合。而在少样本学习中,我们从一个支撑集(support set)中创建多个训练任务,组装成多个训练场景(training episodes),每个训练任务都包含不同的类别。

在小样本学习中,每个标签下的样本数远小于常规机器学习任务。定义小样本学习任务一般用N-way K-shot. 其中 N N N代表标签数, K K K代表样本数.

数据集和术语

Rather than fitting the model to the training dataset, we can think of few-shot learning as “learning to learn.” In contrast to supervised learning, we don’t have a training dataset but a so-called support set. From the support set, we sample training tasks that mimic the use-case scenario during prediction. For example, for 3-way 1-shot learning, a training task consists of 3 classes with 1 example each. With each training task comes a query image that is to be classified. The model is trained on several training tasks from the support set; this is called an episode.

监督学习中,我们让模型拟合训练集,并且在测试集上对模型进行评估. 通常来说,训练集中每个标签都会有很多个样本. Iris数据集每个标签有50个样本,这是非常少的. Deep Learning常用的MNIST数据集,每个标签有5000个样本,还是被认为是少的.

小样本学习可以认为是让模型“学会如何学习”,而不是在训练集上拟合.

支撑集

支撑集的概念如下图所示:
3-way 1-shot

回合

小样本学习模拟使用模型推理的各个场景,从支撑集中抽样,形成训练任务,每个训练任务都附带一个用于推理的查询集,模型会从支撑集中抽样形成的训练任务上进行训练,每次训练完成,称为一个回合(episode).

基类和基集

在测试阶段,模型将接收到一个和训练阶段标签不同的任务,在训练中遇到的标签称为基类,支撑集通常也称为基集.

在这里插入图片描述


总结

小样本学习有许多不同的类型,最常见的是元学习,本质上是更新模型参数以便模型更好的适应新的任务.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/bicheng/79244.shtml
繁体地址,请注明出处:http://hk.pswp.cn/bicheng/79244.shtml
英文地址,请注明出处:http://en.pswp.cn/bicheng/79244.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PETR和位置编码

PETR和位置编码 petr检测网络中有2种类型的位置编码。 正弦编码和petr论文提出的3D Position Embedding。transformer模块输入除了qkv,还有query_pos和key_pos。这里重点记录下query_pos和key_pos的生成 query pos的生成 先定义reference_points, shape为(n_query…

Ubuntu搭建 Nginx以及Keepalived 实现 主备

目录 前言1. 基本知识2. Keepalived3. 脚本配置4. Nginx前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 爬虫神器,无代码爬取,就来:bright.cn Java基本知识: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全)【Java项目】实战CRU…

文章记单词 | 第56篇(六级)

一,单词释义 interview /ˈɪntəvjuː/: 名词:面试;采访;面谈动词:对… 进行面试;采访;接见 radioactive /ˌreɪdiəʊˈktɪv/:形容词:放射性的&#xff…

MATLAB函数调用全解析:从入门到精通

在MATLAB编程中,函数是代码复用的核心单元。本文将全面解析MATLAB中各类函数的调用方法,包括内置函数、自定义函数、匿名函数等,帮助提升代码效率! 一、MATLAB函数概述 MATLAB函数分为以下类型: 内置函数&#xff1a…

哈希表笔记(二)redis

Redis哈希表实现分析 这份代码是Redis核心数据结构之一的字典(dict)实现,本质上是一个哈希表的实现。Redis的字典结构被广泛用于各种内部数据结构,包括Redis数据库本身和哈希键类型。 核心特点 双表设计:每个字典包含两个哈希表&#xff0…

PDF嵌入隐藏的文字

所需依赖 <dependency><groupId>com.itextpdf</groupId><artifactId>itext-core</artifactId><version>9.0.0</version><type>pom</type> </dependency>源码 /*** PDF工具*/ public class PdfUtils {/*** 在 PD…

RAG工程-基于LangChain 实现 Advanced RAG(预检索-查询优化)(下)

Multi-Query 多路召回 多路召回流程图 多路召回策略利用大语言模型&#xff08;LLM&#xff09;对原始查询进行拓展&#xff0c;生成多个与原始查询相关的问题&#xff0c;再将原始查询和生成的所有相关问题一同发送给检索系统进行检索。它适用于用户查询比较宽泛、模糊或者需要…

【业务领域】PCIE协议理解

PCIE协议理解 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 PCIE学习理解。 文章目录 PCIE协议理解[TOC](文章目录) 前言零、PCIE掌握点&#xff1f;一、PCIE是什么&#xff1f;二、PCIE协议总结物理层切速 链路层事务层6.2 TLP的路…

Jupyter notebook快捷键

文章目录 Jupyter notebook键盘模式快捷键&#xff08;常用的已加粗&#xff09; Jupyter notebook键盘模式 命令模式&#xff1a;键盘输入运行程序命令&#xff1b;这时单元格框线为蓝色 编辑模式&#xff1a;允许你往单元格中键入代码或文本&#xff1b;这时单元格框线是绿色…

Unity图片导入设置

&#x1f3c6; 个人愚见&#xff0c;没事写写笔记 &#x1f3c6;《博客内容》&#xff1a;Unity3D开发内容 &#x1f3c6;&#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f50e;Unity支持的图片格式 ☀️BMP:是Windows操作系统的标准图像文件格式&#xff0c;特点是…

Spark-小练试刀

任务1&#xff1a;HDFS上有三份文件&#xff0c;分别为student.txt&#xff08;学生信息表&#xff09;result_bigdata.txt&#xff08;大数据基础成绩表&#xff09;&#xff0c; result_math.txt&#xff08;数学成绩表&#xff09;。 加载student.txt为名称为student的RDD…

内存安全的攻防战:工具链与语言特性的协同突围

一、内存安全&#xff1a;C 开发者永恒的达摩克利斯之剑 在操作系统内核、游戏引擎、金融交易系统等对稳定性要求苛刻的领域&#xff0c;内存安全问题始终是 C 开发者的核心挑战。缓冲区溢出、悬空指针、双重释放等经典漏洞&#xff0c;每年在全球范围内造成数千亿美元的损失。…

OceanBase数据库-学习笔记1-概论

多租户概念 集群和分布式 随着互联网、物联网和大数据技术的发展&#xff0c;数据量呈指数级增长&#xff0c;单机数据库难以存储和处理如此庞大的数据。现代应用通常需要支持大量用户同时访问&#xff0c;单机数据库在高并发场景下容易成为性能瓶颈。单点故障是单机数据库的…

计算机网络——键入网址到网页显示,期间发生了什么?

浏览器做的第一步工作是解析 URL&#xff0c;分清协议是http还是https&#xff0c;主机名&#xff0c;路径名&#xff0c;然后生成http消息&#xff0c;之后委托操作系统将消息发送给 Web 服务器。在发送之前&#xff0c;还需要先去查询dns&#xff0c;首先是查询缓存浏览器缓存…

Qwen3本地化部署,准备工作:SGLang

文章目录 SGLang安装deepseek运行Qwen3-30B-A3B官网:https://github.com/sgl-project/sglang SGLang SGLang 是一个面向大语言模型和视觉语言模型的高效服务框架。它通过协同设计后端运行时和前端编程语言,使模型交互更快速且具备更高可控性。核心特性包括: 1. 快速后端运…

全面接入!Qwen3现已上线千帆

百度智能云千帆正式上线通义千问团队开源的最新一代Qwen3系列模型&#xff0c;包括旗舰级MoE模型Qwen3-235B-A22B、轻量级MoE模型Qwen3-30B-A3B。千帆大模型平台开源模型进一步扩充&#xff0c;以多维开放的模型服务、全栈模型开发、应用开发工具链、多模态数据治理及安全的能力…

蓝桥杯Python(B)省赛回忆

Q&#xff1a;为什么我要写这篇博客&#xff1f; A&#xff1a;在蓝桥杯软件类竞赛&#xff08;Python B组&#xff09;的备赛过程中我在网上搜索关于蓝桥杯的资料&#xff0c;感谢你们提供的参赛经历&#xff0c;对我的备赛起到了整体调整的帮助&#xff0c;让我知道如何以更…

数据转储(go)

​ 随着时间推移&#xff0c;数据库中的数据量不断累积&#xff0c;可能导致查询性能下降、存储压力增加等问题。数据转储作为一种有效的数据管理策略&#xff0c;能够将历史数据从生产数据库中转移到其他存储介质&#xff0c;从而减轻数据库负担&#xff0c;提高系统性能&…

Git Stash 详解

Git Stash 详解 在使用 Git 进行版本控制时&#xff0c;经常会遇到需要临时保存当前工作状态的情况。git stash 命令就是为此设计的&#xff0c;它允许你将未提交的更改暂存起来&#xff0c;在处理其他任务或分支后&#xff0c;再恢复这些更改。 目录 基本概念常用命令示例和…

Windows下Dify安装及使用

Dify安装及使用 Dify 是开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力&#xff0c;轻松构建和运营生成式 AI 原生应用。比 LangChain 更易用。 前置条件 windows下安装了docker环境-Windows11安装Docker-CSDN博客 下载 Git下载…