在这里插入图片描述

Java中的贪心算法应用:5G网络切片问题详解

1. 5G网络切片问题概述

5G网络切片是将物理网络划分为多个虚拟网络的技术,每个切片可以满足不同业务需求(如低延迟、高带宽等)。网络切片资源分配问题可以抽象为一个典型的优化问题:在有限的物理资源下,如何分配资源给多个切片请求,以最大化网络效益或满足特定目标。

1.1 问题定义

给定:

  • 一组网络资源(如带宽、计算、存储等)
  • 一组网络切片请求,每个请求有其资源需求和效益值
  • 目标:选择一组切片请求进行分配,使得总效益最大化,且不超过资源限制

1.2 数学模型

设:

  • 总资源为 R = {r₁, r₂, …, rₘ}(m种资源)
  • n个切片请求 S = {s₁, s₂, …, sₙ}
  • 每个切片 sᵢ 的资源需求为 Dᵢ = {dᵢ₁, dᵢ₂, …, dᵢₘ}
  • 每个切片 sᵢ 的效益值为 vᵢ
  • 决策变量 xᵢ ∈ {0,1} 表示是否选择切片 sᵢ

目标函数:
maximize Σ(vᵢ * xᵢ) for i=1 to n

约束条件:
Σ(dᵢⱼ * xᵢ) ≤ rⱼ for j=1 to m, i=1 to n

2. 贪心算法原理与适用性

2.1 贪心算法基本思想

贪心算法通过每一步做出局部最优选择,希望最终达到全局最优。对于5G网络切片问题,贪心策略通常基于某种"性价比"指标来选择切片。

2.2 为什么贪心算法适用于此问题

  1. 问题具有贪心选择性质:局部最优选择能导致全局最优解
  2. 高效性:相比动态规划等算法,贪心算法时间复杂度更低
  3. 可扩展性:容易适应资源多维度的场景

2.3 常见贪心策略

  1. 最大效益优先:选择单位资源效益最高的切片
  2. 最小资源优先:选择资源需求最小的切片
  3. 效益资源比优先:选择效益与资源需求的比值最高的切片

3. Java实现详解

3.1 数据结构定义

首先定义切片和资源的数据结构:

public class NetworkSlice {private int id;private String sliceType; // eMBB, URLLC, mMTC等private Map<String, Double> resourceRequirements; // 资源需求键值对private double profit; // 该切片的效益值// 构造函数public NetworkSlice(int id, String sliceType, Map<String, Double> requirements, double profit) {this.id = id;this.sliceType = sliceType;this.resourceRequirements = new HashMap<>(requirements);this.profit = profit;}// 计算资源需求总量(用于某些贪心策略)public double getTotalResourceRequirement() {return resourceRequirements.values().stream().mapToDouble(Double::doubleValue).sum();}// 计算效益资源比public double getProfitToResourceRatio() {return profit / getTotalResourceRequirement();}// getterspublic int getId() { return id; }public String getSliceType() { return sliceType; }public Map<String, Double> getResourceRequirements() { return new HashMap<>(resourceRequirements); }public double getProfit() { return profit; }
}

3.2 贪心算法实现

3.2.1 基于效益资源比的贪心算法
import java.util.*;public class GreedySliceAllocation {private Map<String, Double> availableResources;private List<NetworkSlice> slices;public GreedySliceAllocation(Map<String, Double> availableResources, List<NetworkSlice> slices) {this.availableResources = new HashMap<>(availableResources);this.slices = new ArrayList<>(slices);}// 主分配方法public AllocationResult allocateSlices() {// 创建结果对象AllocationResult result = new AllocationResult();// 按效益资源比降序排序slices.sort((s1, s2) -> {double ratio1 = s1.getProfitToResourceRatio();double ratio2 = s2.getProfitToResourceRatio();return Double.compare(ratio2, ratio1); // 降序});// 遍历排序后的切片for (NetworkSlice slice : slices) {if (canAllocate(slice)) {allocateResources(slice);result.addAllocatedSlice(slice);} else {result.addRejectedSlice(slice);}}return result;}// 检查是否可以分配资源给该切片private boolean canAllocate(NetworkSlice slice) {Map<String, Double> requirements = slice.getResourceRequirements();for (Map.Entry<String, Double> entry : requirements.entrySet()) {String resource = entry.getKey();double required = entry.getValue();double available = availableResources.getOrDefault(resource, 0.0);if (required > available) {return false;}}return true;}// 分配资源private void allocateResources(NetworkSlice slice) {Map<String, Double> requirements = slice.getResourceRequirements();for (Map.Entry<String, Double> entry : requirements.entrySet()) {String resource = entry.getKey();double required = entry.getValue();availableResources.put(resource, availableResources.get(resource) - required);}}// 结果类public static class AllocationResult {private List<NetworkSlice> allocatedSlices;private List<NetworkSlice> rejectedSlices;private double totalProfit;public AllocationResult() {allocatedSlices = new ArrayList<>();rejectedSlices = new ArrayList<>();totalProfit = 0.0;}public void addAllocatedSlice(NetworkSlice slice) {allocatedSlices.add(slice);totalProfit += slice.getProfit();}public void addRejectedSlice(NetworkSlice slice) {rejectedSlices.add(slice);}// getterspublic List<NetworkSlice> getAllocatedSlices() { return allocatedSlices; }public List<NetworkSlice> getRejectedSlices() { return rejectedSlices; }public double getTotalProfit() { return totalProfit; }}
}
3.2.2 多维度资源分配增强版

对于更复杂的多资源约束情况,我们可以增强算法:

public class EnhancedGreedyAllocator {// 权重可以根据不同资源的重要性进行调整private Map<String, Double> resourceWeights; public EnhancedGreedyAllocator(Map<String, Double> resourceWeights) {this.resourceWeights = new HashMap<>(resourceWeights);}public AllocationResult allocate(List<NetworkSlice> slices, Map<String, Double> availableResources) {// 计算每个切片的加权资源需求Map<NetworkSlice, Double> weightedDemands = new HashMap<>();for (NetworkSlice slice : slices) {double weightedSum = 0.0;for (Map.Entry<String, Double> entry : slice.getResourceRequirements().entrySet()) {String resource = entry.getKey();double demand = entry.getValue();double weight = resourceWeights.getOrDefault(resource, 1.0);// 标准化:需求/可用资源double normalized = demand / availableResources.getOrDefault(resource, Double.MAX_VALUE);weightedSum += weight * normalized;}weightedDemands.put(slice, weightedSum);}// 按效益/加权需求比排序slices.sort((s1, s2) -> {double ratio1 = s1.getProfit() / weightedDemands.get(s1);double ratio2 = s2.getProfit() / weightedDemands.get(s2);return Double.compare(ratio2, ratio1); // 降序});AllocationResult result = new AllocationResult();Map<String, Double> remainingResources = new HashMap<>(availableResources);for (NetworkSlice slice : slices) {if (canAllocate(slice, remainingResources)) {allocateSlice(slice, remainingResources);result.addAllocatedSlice(slice);} else {result.addRejectedSlice(slice);}}return result;}private boolean canAllocate(NetworkSlice slice, Map<String, Double> resources) {for (Map.Entry<String, Double> entry : slice.getResourceRequirements().entrySet()) {String resource = entry.getKey();double required = entry.getValue();if (required > resources.getOrDefault(resource, 0.0)) {return false;}}return true;}private void allocateSlice(NetworkSlice slice, Map<String, Double> resources) {for (Map.Entry<String, Double> entry : slice.getResourceRequirements().entrySet()) {String resource = entry.getKey();double required = entry.getValue();resources.put(resource, resources.get(resource) - required);}}
}

3.3 测试与验证

编写测试代码验证算法:

public class SliceAllocationTest {public static void main(String[] args) {// 定义可用资源Map<String, Double> availableResources = new HashMap<>();availableResources.put("bandwidth", 1000.0); // MHzavailableResources.put("computing", 500.0);  // GHzavailableResources.put("storage", 2000.0);   // GB// 创建切片请求List<NetworkSlice> slices = new ArrayList<>();// eMBB切片 - 增强移动宽带,高带宽需求Map<String, Double> embbReq = new HashMap<>();embbReq.put("bandwidth", 200.0);embbReq.put("computing", 50.0);embbReq.put("storage", 100.0);slices.add(new NetworkSlice(1, "eMBB", embbReq, 800.0));// URLLC切片 - 超可靠低延迟,中等需求Map<String, Double> urllcReq = new HashMap<>();urllcReq.put("bandwidth", 100.0);urllcReq.put("computing", 80.0);urllcReq.put("storage", 50.0);slices.add(new NetworkSlice(2, "URLLC", urllcReq, 750.0));// mMTC切片 - 大规模物联网,低资源需求Map<String, Double> mtcReq = new HashMap<>();mtcReq.put("bandwidth", 50.0);mtcReq.put("computing", 20.0);mtcReq.put("storage", 200.0);slices.add(new NetworkSlice(3, "mMTC", mtcReq, 400.0));// 运行贪心算法GreedySliceAllocation allocator = new GreedySliceAllocation(availableResources, slices);GreedySliceAllocation.AllocationResult result = allocator.allocateSlices();// 输出结果System.out.println("Total profit: " + result.getTotalProfit());System.out.println("\nAllocated slices:");for (NetworkSlice slice : result.getAllocatedSlices()) {System.out.println("Slice " + slice.getId() + " (" + slice.getSliceType() + "), Profit: " + slice.getProfit());}System.out.println("\nRejected slices:");for (NetworkSlice slice : result.getRejectedSlices()) {System.out.println("Slice " + slice.getId() + " (" + slice.getSliceType() + "), Profit: " + slice.getProfit());}// 测试增强版分配器Map<String, Double> weights = new HashMap<>();weights.put("bandwidth", 1.0);weights.put("computing", 1.5); // 计算资源更重要weights.put("storage", 0.8);EnhancedGreedyAllocator enhancedAllocator = new EnhancedGreedyAllocator(weights);GreedySliceAllocation.AllocationResult enhancedResult = enhancedAllocator.allocate(slices, availableResources);System.out.println("\nEnhanced allocator total profit: " + enhancedResult.getTotalProfit());}
}

4. 算法分析与优化

4.1 时间复杂度分析

  1. 排序阶段:O(n log n),其中n是切片数量
  2. 分配阶段:O(n * m),其中m是资源类型数量
  3. 总时间复杂度:O(n log n + n * m) ≈ O(n log n)(当m远小于n时)

4.2 空间复杂度分析

  1. 需要O(n)空间存储切片列表
  2. O(m)空间存储资源信息
  3. 总空间复杂度:O(n + m)

4.3 优化策略

  1. 预处理过滤:先过滤掉明显无法满足的切片(任何资源需求超过总资源)
  2. 资源归一化:对不同量纲的资源进行标准化处理
  3. 动态权重调整:根据资源剩余比例动态调整贪心策略的权重
  4. 回溯机制:当无法分配时,尝试替换已分配的低效益切片

4.4 优化实现示例

public class OptimizedGreedyAllocator {public AllocationResult allocateWithReplacement(List<NetworkSlice> slices, Map<String, Double> availableResources) {// 第一次尝试基本贪心分配GreedySliceAllocation basicAllocator = new GreedySliceAllocation(availableResources, slices);AllocationResult result = basicAllocator.allocateSlices();// 检查是否有被拒绝的高效益切片for (NetworkSlice rejected : result.getRejectedSlices()) {// 尝试替换已分配的低效益切片List<NetworkSlice> toRemove = new ArrayList<>();double totalReleasedProfit = 0.0;Map<String, Double> releasedResources = new HashMap<>();// 找出可以释放足够资源的一组切片for (NetworkSlice allocated : result.getAllocatedSlices()) {if (allocated.getProfit() < rejected.getProfit()) {toRemove.add(allocated);totalReleasedProfit += allocated.getProfit();// 计算释放的资源for (Map.Entry<String, Double> entry : allocated.getResourceRequirements().entrySet()) {String res = entry.getKey();double val = entry.getValue();releasedResources.put(res, releasedResources.getOrDefault(res, 0.0) + val);}// 检查是否已释放足够资源boolean canAllocateNow = true;for (Map.Entry<String, Double> entry : rejected.getResourceRequirements().entrySet()) {String res = entry.getKey();double required = entry.getValue();double released = releasedResources.getOrDefault(res, 0.0);double currentlyAvailable = availableResources.get(res) - result.getAllocatedSlices().stream().filter(s -> !toRemove.contains(s)).mapToDouble(s -> s.getResourceRequirements().getOrDefault(res, 0.0)).sum();if (required > currentlyAvailable + released) {canAllocateNow = false;break;}}if (canAllocateNow) {// 执行替换result.getAllocatedSlices().removeAll(toRemove);result.getAllocatedSlices().add(rejected);result.getRejectedSlices().remove(rejected);result.getRejectedSlices().addAll(toRemove);result.setTotalProfit(result.getTotalProfit() - totalReleasedProfit + rejected.getProfit());break;}}}}return result;}
}

5. 实际应用考虑

5.1 动态资源分配

实际5G环境中,资源请求是动态到达的,需要扩展算法支持增量分配:

public class DynamicSliceAllocator {private Map<String, Double> availableResources;private List<NetworkSlice> allocatedSlices;private double totalProfit;public DynamicSliceAllocator(Map<String, Double> initialResources) {this.availableResources = new HashMap<>(initialResources);this.allocatedSlices = new ArrayList<>();this.totalProfit = 0.0;}public AllocationResult processNewSlice(NetworkSlice newSlice) {// 尝试直接分配if (canAllocate(newSlice)) {allocateResources(newSlice);allocatedSlices.add(newSlice);totalProfit += newSlice.getProfit();return new AllocationResult(true, newSlice, null);}// 尝试替换策略List<NetworkSlice> candidates = findReplacementCandidates(newSlice);if (!candidates.isEmpty()) {// 选择替换效益差最大的一个切片NetworkSlice toReplace = candidates.get(0);double profitDiff = newSlice.getProfit() - toReplace.getProfit();if (profitDiff > 0) {// 执行替换deallocateResources(toReplace);allocatedSlices.remove(toReplace);allocateResources(newSlice);allocatedSlices.add(newSlice);totalProfit += profitDiff;return new AllocationResult(true, newSlice, toReplace);}}return new AllocationResult(false, null, newSlice);}private List<NetworkSlice> findReplacementCandidates(NetworkSlice newSlice) {List<NetworkSlice> candidates = new ArrayList<>();for (NetworkSlice slice : allocatedSlices) {if (slice.getProfit() < newSlice.getProfit()) {// 检查替换后是否能满足boolean canReplace = true;for (Map.Entry<String, Double> entry : newSlice.getResourceRequirements().entrySet()) {String res = entry.getKey();double required = entry.getValue();double currentlyUsed = allocatedSlices.stream().filter(s -> s != slice).mapToDouble(s -> s.getResourceRequirements().getOrDefault(res, 0.0)).sum();double available = availableResources.get(res);if (required > available - currentlyUsed) {canReplace = false;break;}}if (canReplace) {candidates.add(slice);}}}// 按效益升序排序,优先替换低效益的candidates.sort(Comparator.comparingDouble(NetworkSlice::getProfit));return candidates;}// ... 其他方法同前 ...
}

5.2 多目标优化

实际场景可能需要考虑多个优化目标:

public class MultiObjectiveAllocator {// 权重参数private double profitWeight;private double fairnessWeight;private double utilizationWeight;public MultiObjectiveAllocator(double profitWeight, double fairnessWeight, double utilizationWeight) {this.profitWeight = profitWeight;this.fairnessWeight = fairnessWeight;this.utilizationWeight = utilizationWeight;}public AllocationResult allocate(List<NetworkSlice> slices, Map<String, Double> resources) {// 计算每个切片的综合得分Map<NetworkSlice, Double> scores = new HashMap<>();for (NetworkSlice slice : slices) {double profitScore = normalizeProfit(slice, slices);double fairnessScore = calculateFairnessScore(slice, slices);double utilizationScore = calculateUtilizationScore(slice, resources);double totalScore = profitWeight * profitScore + fairnessWeight * fairnessScore+ utilizationWeight * utilizationScore;scores.put(slice, totalScore);}// 按得分排序slices.sort((s1, s2) -> Double.compare(scores.get(s2), scores.get(s1)));// 贪心分配AllocationResult result = new AllocationResult();Map<String, Double> remainingResources = new HashMap<>(resources);for (NetworkSlice slice : slices) {if (canAllocate(slice, remainingResources)) {allocateSlice(slice, remainingResources);result.addAllocatedSlice(slice);} else {result.addRejectedSlice(slice);}}return result;}private double normalizeProfit(NetworkSlice slice, List<NetworkSlice> allSlices) {double maxProfit = allSlices.stream().mapToDouble(NetworkSlice::getProfit).max().orElse(1.0);return slice.getProfit() / maxProfit;}private double calculateFairnessScore(NetworkSlice slice, List<NetworkSlice> allSlices) {// 简化的公平性计算:考虑切片类型的分布long count = allSlices.stream().filter(s -> s.getSliceType().equals(slice.getSliceType())).count();return 1.0 / count; // 类型越稀有,得分越高}private double calculateUtilizationScore(NetworkSlice slice, Map<String, Double> resources) {// 计算该切片对资源的利用率double totalUtilization = 0.0;int count = 0;for (Map.Entry<String, Double> entry : slice.getResourceRequirements().entrySet()) {String res = entry.getKey();double demand = entry.getValue();double available = resources.getOrDefault(res, 0.0);if (available > 0) {totalUtilization += demand / available;count++;}}return count > 0 ? totalUtilization / count : 0.0;}// ... 其他辅助方法同前 ...
}

6. 性能比较与实验

6.1 不同贪心策略比较

我们可以实现一个测试框架来比较不同策略:

public class StrategyComparator {public static void compareStrategies(List<NetworkSlice> slices, Map<String, Double> resources,int numTrials) {// 准备不同的分配策略GreedySliceAllocation profitRatioAllocator = new GreedySliceAllocation(resources, slices);Map<String, Double> weights = new HashMap<>();weights.put("bandwidth", 1.0);weights.put("computing", 1.2);weights.put("storage", 0.8);EnhancedGreedyAllocator enhancedAllocator = new EnhancedGreedyAllocator(weights);MultiObjectiveAllocator multiObjAllocator = new MultiObjectiveAllocator(0.6, 0.2, 0.2);// 测试每种策略testStrategy("Profit-Ratio Greedy", profitRatioAllocator, slices, resources, numTrials);testStrategy("Enhanced Greedy", enhancedAllocator, slices, resources, numTrials);testStrategy("Multi-Objective", multiObjAllocator, slices, resources, numTrials);}private static void testStrategy(String strategyName, Object allocator, List<NetworkSlice> slices,Map<String, Double> resources,int numTrials) {System.out.println("\nTesting strategy: " + strategyName);long totalTime = 0;double totalProfit = 0;int totalAllocated = 0;for (int i = 0; i < numTrials; i++) {// 每次测试前打乱切片顺序Collections.shuffle(slices);long startTime = System.nanoTime();AllocationResult result = null;if (allocator instanceof GreedySliceAllocation) {((GreedySliceAllocation)allocator).setSlices(slices);result = ((GreedySliceAllocation)allocator).allocateSlices();} else if (allocator instanceof EnhancedGreedyAllocator) {result = ((EnhancedGreedyAllocator)allocator).allocate(slices, resources);} else if (allocator instanceof MultiObjectiveAllocator) {result = ((MultiObjectiveAllocator)allocator).allocate(slices, resources);}long endTime = System.nanoTime();totalTime += (endTime - startTime);totalProfit += result.getTotalProfit();totalAllocated += result.getAllocatedSlices().size();}// 输出统计结果System.out.printf("Average time: %.2f ms\n", (totalTime / numTrials) / 1_000_000.0);System.out.printf("Average profit: %.2f\n", totalProfit / numTrials);System.out.printf("Average slices allocated: %.2f\n", (double)totalAllocated / numTrials);}
}

6.2 大规模数据测试

生成大规模测试数据并测试:

public class LargeScaleTest {public static void main(String[] args) {// 生成1000个随机切片List<NetworkSlice> slices = generateRandomSlices(1000);// 设置资源Map<String, Double> resources = new HashMap<>();resources.put("bandwidth", 10_000.0);resources.put("computing", 5_000.0);resources.put("storage", 20_000.0);// 比较策略StrategyComparator.compareStrategies(slices, resources, 10);}private static List<NetworkSlice> generateRandomSlices(int count) {List<NetworkSlice> slices = new ArrayList<>();Random random = new Random();String[] types = {"eMBB", "URLLC", "mMTC"};for (int i = 0; i < count; i++) {String type = types[random.nextInt(types.length)];Map<String, Double> requirements = new HashMap<>();// 随机生成资源需求requirements.put("bandwidth", 50 + random.nextDouble() * 450); // 50-500requirements.put("computing", 10 + random.nextDouble() * 90);  // 10-100requirements.put("storage", 50 + random.nextDouble() * 950);   // 50-1000// 效益与资源需求相关但加入随机性double profit = (requirements.get("bandwidth") * 0.4 + requirements.get("computing") * 0.5 + requirements.get("storage") * 0.1) * (0.8 + random.nextDouble() * 0.4);slices.add(new NetworkSlice(i, type, requirements, profit));}return slices;}
}

7. 扩展与进阶

7.1 机器学习增强的贪心算法

可以结合机器学习预测来改进贪心策略:

public class MLEnhancedAllocator {private SliceProfitPredictor predictor;public MLEnhancedAllocator(SliceProfitPredictor predictor) {this.predictor = predictor;}public AllocationResult allocate(List<NetworkSlice> slices, Map<String, Double> resources,boolean usePredictedProfit) {// 如果需要使用预测效益if (usePredictedProfit) {for (NetworkSlice slice : slices) {double predicted = predictor.predict(slice);slice.setProfit(predicted); // 假设有setProfit方法}}// 然后使用常规贪心算法GreedySliceAllocation allocator = new GreedySliceAllocation(resources, slices);return allocator.allocateSlices();}
}// 预测器接口
interface SliceProfitPredictor {double predict(NetworkSlice slice);
}// 示例实现 - 实际应用中可以使用训练好的模型
class SimpleSlicePredictor implements SliceProfitPredictor {@Overridepublic double predict(NetworkSlice slice) {// 简单线性模型Map<String, Double> req = slice.getResourceRequirements();return req.getOrDefault("bandwidth", 0.0) * 0.6 + req.getOrDefault("computing", 0.0) * 0.8+ req.getOrDefault("storage", 0.0) * 0.2;}
}

7.2 分布式贪心算法

对于超大规模场景,可以实现分布式版本:

public class DistributedGreedyAllocator {private ExecutorService executor;private int numPartitions;public DistributedGreedyAllocator(int numThreads, int numPartitions) {this.executor = Executors.newFixedThreadPool(numThreads);this.numPartitions = numPartitions;}public AllocationResult allocate(List<NetworkSlice> slices, Map<String, Double> resources) throws InterruptedException {// 分区List<List<NetworkSlice>> partitions = partitionSlices(slices, numPartitions);// 准备任务List<Callable<AllocationResult>> tasks = new ArrayList<>();for (List<NetworkSlice> partition : partitions) {tasks.add(() -> {GreedySliceAllocation allocator = new GreedySliceAllocation(resources, partition);return allocator.allocateSlices();});}// 执行并合并结果List<Future<AllocationResult>> futures = executor.invokeAll(tasks);AllocationResult finalResult = new AllocationResult();for (Future<AllocationResult> future : futures) {try {AllocationResult partialResult = future.get();finalResult.getAllocatedSlices().addAll(partialResult.getAllocatedSlices());finalResult.getRejectedSlices().addAll(partialResult.getRejectedSlices());finalResult.setTotalProfit(finalResult.getTotalProfit() + partialResult.getTotalProfit());} catch (ExecutionException e) {e.printStackTrace();}}// 由于分区可能导致资源超额分配,需要后处理return reconcileAllocations(finalResult, resources);}private List<List<NetworkSlice>> partitionSlices(List<NetworkSlice> slices, int numPartitions) {// 简单均匀分区 - 实际中可以根据切片类型或资源需求进行智能分区List<List<NetworkSlice>> partitions = new ArrayList<>();int size = slices.size() / numPartitions;for (int i = 0; i < numPartitions; i++) {int from = i * size;int to = (i == numPartitions - 1) ? slices.size() : (i + 1) * size;partitions.add(new ArrayList<>(slices.subList(from, to)));}return partitions;}private AllocationResult reconcileAllocations(AllocationResult result, Map<String, Double> resources) {// 检查资源约束Map<String, Double> usedResources = calculateUsedResources(result.getAllocatedSlices());boolean violatesConstraints = false;for (Map.Entry<String, Double> entry : usedResources.entrySet()) {if (entry.getValue() > resources.getOrDefault(entry.getKey(), 0.0)) {violatesConstraints = true;break;}}if (!violatesConstraints) {return result;}// 如果违反约束,需要移除一些切片AllocationResult adjustedResult = new AllocationResult();Map<String, Double> tempUsed = new HashMap<>();// 按效益降序排序已分配切片result.getAllocatedSlices().sort((s1, s2) -> Double.compare(s2.getProfit(), s1.getProfit()));for (NetworkSlice slice : result.getAllocatedSlices()) {boolean canAdd = true;Map<String, Double> newUsed = new HashMap<>(tempUsed);for (Map.Entry<String, Double> entry : slice.getResourceRequirements().entrySet()) {String res = entry.getKey();double demand = entry.getValue();newUsed.put(res, newUsed.getOrDefault(res, 0.0) + demand);if (newUsed.get(res) > resources.getOrDefault(res, 0.0)) {canAdd = false;break;}}if (canAdd) {adjustedResult.addAllocatedSlice(slice);tempUsed = newUsed;} else {adjustedResult.addRejectedSlice(slice);}}adjustedResult.setTotalProfit(adjustedResult.getAllocatedSlices().stream().mapToDouble(NetworkSlice::getProfit).sum());return adjustedResult;}private Map<String, Double> calculateUsedResources(List<NetworkSlice> slices) {Map<String, Double> used = new HashMap<>();for (NetworkSlice slice : slices) {for (Map.Entry<String, Double> entry : slice.getResourceRequirements().entrySet()) {String res = entry.getKey();double val = entry.getValue();used.put(res, used.getOrDefault(res, 0.0) + val);}}return used;}public void shutdown() {executor.shutdown();}
}

8. 总结与最佳实践

8.1 贪心算法在5G网络切片中的优势

  1. 高效性:适用于实时或近实时的资源分配决策
  2. 可扩展性:容易适应多维资源约束
  3. 简单性:实现和理解相对简单
  4. 灵活性:可以通过不同排序策略适应不同优化目标

8.2 适用场景

  1. 切片请求数量大但单个请求资源需求相对总量较小
  2. 需要快速做出分配决策的场景
  3. 资源维度较多但约束相对宽松的情况

8.3 局限性

  1. 不一定能得到全局最优解
  2. 对资源竞争激烈的情况效果可能不佳
  3. 需要精心设计排序策略

8.4 最佳实践建议

  1. 选择合适的排序指标:根据业务目标选择效益资源比、资源紧凑度等
  2. 实现资源归一化:处理不同量纲的资源类型
  3. 加入回溯或替换机制:提高解的质量
  4. 考虑动态权重:根据资源剩余情况调整策略
  5. 并行化处理:对于大规模问题考虑分布式实现
  6. 结合其他算法:如将贪心作为初始解再用局部搜索优化

通过以上详细的Java实现和分析,我们可以看到贪心算法在5G网络切片资源分配问题中的强大应用潜力。虽然它不能保证总是获得最优解,但在许多实际场景中,它能够在合理时间内提供高质量的解决方案,是5G网络资源管理工具箱中的重要工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/web/96833.shtml
繁体地址,请注明出处:http://hk.pswp.cn/web/96833.shtml
英文地址,请注明出处:http://en.pswp.cn/web/96833.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android WorkManager的概念和使用

1. WorkManager基础与核心概念 1.1 WorkManager概述 WorkManager是Android Jetpack架构组件库的核心成员&#xff0c;专为管理可靠的后台任务而设计。它提供了一套统一的API&#xff0c;用于调度需保障执行的延迟型异步任务&#xff08;如数据同步、日志上传&#xff09;&…

容器使用卷

1.创建一个卷并让容器挂载该卷1.创建一个卷[roothost1 ~]# docker volume create test-vol test-vol2.列出本地 Docker 主机上的卷[roothost1 ~]# docker volume ls DRIVER VOLUME NAME local test-vol3.查看该卷的详细信息[roothost1 ~]# docker volume inspect test-v…

高数基础知识(下)②

文章目录七、微分方程7.3 高阶线性微分方程7.3.1 线性微分方程的解的结构7.3.2 常系数齐次线性微分方程7.3.3 常系数非齐次线性微分方程八、多元函数微分学8.1 偏导数8.2 全微分8.3 基本定理8.4 复合函数微分法8.5 隐函数微分法8.6 多元函数的极值8.6.1 无条件极值8.6.2 条件极…

从0°到180°,STM32玩转MG996R舵机

1.MG996R舵机的性能参数参数数值产品型号MG995/MG996R产品重量55 g工作扭矩13 kgcm反应速度53-62 R/M使用温度-30C ~ 55C死区设置4 微秒插头类型JR、FUTABA 通用转动角度180&#xff08;左90&#xff0c;右90&#xff09;舵机类型数码舵机使用电压3.0 - 7.2 V工作电流100 mA结构…

[frontend]mermaid code2image

hello everyone, welcome to my bolg, here i will introduce something interesting, and if you are interested it, please just let me know. follow me and send me a message are both avaiable. what is mermaid? Mermaid 是一个工具&#xff0c;它能让你用简单的文字代…

Jakarta EE 在 IntelliJ IDEA 中开发简单留言板应用的实验指导(附完整代码)

Jakarta EE 在 IntelliJ IDEA 中开发简单留言板应用的实验指导(附完整代码) 摘要:实验基于Jakarta EE 9+(兼容Tomcat 10+)、Maven作为构建工具,并在IntelliJ IDEA 2023.2(Community版免费)中进行。项目使用Maven Archetype WebApp模板生成基础结构,然后升级到J…

JavaScript经典面试题一(JavaScript基础)

目录 一、JavaScript中的变量提升 1. 机制 2. 示例 3. 注意事项 4. 总结 二、var、let和const的区别。 1. 作用域&#xff08;Scope&#xff09; 2. 变量提升&#xff08;Hoisting&#xff09; 3. 重新赋值和重新声明 4. 示例 示例1&#xff1a;作用域和块级行为 示…

数据库造神计划第七天---增删改查(CRUD)(3)

&#x1f525;个人主页&#xff1a;寻星探路 &#x1f3ac;作者简介&#xff1a;Java研发方向学习者 &#x1f4d6;个人专栏&#xff1a;《从青铜到王者&#xff0c;就差这讲数据结构&#xff01;&#xff01;&#xff01;》、 《JAVA&#xff08;SE&#xff09;----如此简单&a…

AWS SQS 可观测性最佳实践

AWS SQS AWS SQS&#xff08;Amazon Simple Queue Service&#xff09;是一种完全托管的消息队列服务&#xff0c;用于在分布式系统中解耦和缓冲消息。它支持高可用性、可扩展性和安全性&#xff0c;能够处理大量消息&#xff0c;确保消息的可靠传输和顺序性。开发者可以轻松集…

AI推理范式:从CoT到ReAct再到ToT的进化之路

在人工智能领域&#xff0c;如何让模型像人类一样进行复杂推理和问题解决&#xff0c;一直是核心挑战。近年来&#xff0c;思维链&#xff08;Chain-of-Thought, CoT&#xff09;、推理与行动&#xff08;ReAct&#xff09; 和 思维树&#xff08;Tree-of-Thoughts, ToT&#x…

2025时序数据库选型:深入解析IoTDB从主从架构基因到AI赋能的创新之路

原创经验总结,拒绝空谈,用数据和实战说话 时序数据时代的"四重考验" 在智慧工厂、新能源车、金融市场等场景中,每秒百万级的数据点如潮水般涌来。这些时序数据背后隐藏着四大核心挑战:极高的写入并发、强时间关联性查询、海量数据生命周期管理,以及乱序与高基…

深入浅出LVS负载均衡群集:原理、分类与NAT模式实战部署

深入浅出LVS负载均衡群集&#xff1a;原理、分类与NAT模式实战部署 文章目录深入浅出LVS负载均衡群集&#xff1a;原理、分类与NAT模式实战部署一、企业群集&#xff1a;从单台服务器到分布式架构的必然选择1. 什么是群集&#xff1f;2. 为什么需要群集&#xff1f;二、企业群集…

Flash Table实测:JAI赋能低代码开发,重塑企业级应用构建范式

目录&#x1f50d; 引言1.1 什么是Flash Table1.2 低代码平台的进化与FlashTable的革新✨FlashTable背景&#xff1a;为什么需要新一代低代码平台&#xff1f;2.1 传统开发的痛点2.2 低代码平台的局限2.3 FlashTable的差异化定位&#x1f4bb; FlashTable安装&#xff1a;Docke…

SonarQube代码质量管理平台本地化搭建和使用

SonarQube 是一个开源的代码质量管理平台&#xff0c;主要用于持续检查代码质量&#xff0c;支持多种编程语言。 本文章记录了在windows环境中&#xff0c;搭建和使用SonarQube的完整过程。 ①SonarQube平台搭建 SonarQube最新社区版本下载地址&#xff1a; https://www.son…

基于双向LSTM深度学习网络模型的文本序列推荐系统matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.部分程序 4.算法理论概述 5.完整程序 1.程序功能描述 在信息爆炸的时代&#xff0c;用户面临着海量文本信息的筛选难题&#xff0c;文本序列推荐系统应运而生。双向长短期记忆网络&#xff08;Bi-directional Long …

Transformer实战(17)——微调Transformer语言模型进行多标签文本分类

Transformer实战(17)——微调Transformer语言模型进行多标签文本分类 0. 前言 1. 多标签文本分类 2. 数据加载与处理 3. 模型微调 小结 系列链接 0. 前言 与单标签分类不同,多标签分类要求模型能够为同一文本分配多个相关标签,这在新闻分类、文献标注、内容推荐等场景中尤…

开源 C++ QT Widget 开发(十六)程序发布

文章的目的为了记录使用C 进行QT Widget 开发学习的经历。临时学习&#xff0c;完成app的开发。开发流程和要点有些记忆模糊&#xff0c;赶紧记录&#xff0c;防止忘记。 相关链接&#xff1a; 开源 C QT Widget 开发&#xff08;一&#xff09;工程文件结构-CSDN博客 开源…

MATLAB2-结构化编程和自定义函数-台大郭彦甫视频

目录 if elseif else switch case otherwise while exercise练习 for 预宣告 练习题 break tips编程的小技巧 functions函数 练习题 函数句柄 if elseif else 如果condition为真&#xff0c;执行语句 if condition1statement1 elseif condition2statement2 elsest…

LVGL移植2048小游戏全攻略

目录 准备脚手架 修改源码 对接触摸 测试编译 测试运行 这一节将以一个已经编写好的 lvgl 小游戏 2048 描述如何将已经编写完成的 lvgl 程序移植到开发板上。 准备脚手架 在这之前&#xff0c;我们先准备基础的 LVGL 脚手架。可以直接从 lv_g2d_test 里复制过来进行修改…

在Unity2021中使用Profiler的Deep Profile功能时内存超高怎么办?

这通常是因为Deep Profile会记录每一帧所有函数调用的详细信息&#xff0c;导致内存急剧增长&#xff0c;尤其在大型项目或复杂场景中4。别担心&#xff0c;我来帮你分析原因并提供一些解决办法。 理解 Deep Profile 的内存开销与替代方案 Deep Profile是Unity Profiler的一个…