知识回顾

  1. 数据增强
  2. 卷积神经网络定义的写法
  3. batch归一化:调整一个批次的分布,常用与图像数据
  4. 特征图:只有卷积操作输出的才叫特征图
  5. 调度器:直接修改基础学习率

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

  1. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

先看一下昨天的代码

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),                # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(0.2)self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别def forward(self, x):# 第一步:将输入图像展平为一维向量x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]# 第一层全连接 + 激活 + Dropoutx = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]x = self.relu1(x)    # 应用ReLU激活函数x = self.dropout1(x) # 训练时随机丢弃部分神经元输出# 第二层全连接 + 激活 + Dropoutx = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]x = self.relu2(x)    # 应用ReLU激活函数x = self.dropout2(x) # 训练时随机丢弃部分神经元输出# 第三层(输出层)全连接x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]return x  # 返回未经过Softmax的logits# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / total# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testprint(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# 保存模型
torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# print("模型已保存为: cifar10_mlp_model.pth")

可以看到即使在深度神经网络情况下,准确率仍旧较差,这是因为特征没有被有效提取----真正重要的是特征的提取和加工过程。MLP把所有的像素全部展平了(这是全局的信息),无法布置到局部的信息,所以引入了卷积神经网络。

卷积层是特征提取器,池化层是特征压缩器。他们二者都是在做下采样操作。

一、数据增强

在图像数据预处理环节,为提升数据多样性,可采用数据增强(数据增广)策略。该策略通常不改变单次训练的样本总数,而是通过对现有图像进行多样化变换,使每次训练输入的样本呈现更丰富的形态差异,从而有效扩展模型训练的样本空间多样性。

常见的修改策略包括以下几类

  1. 几何变换:如旋转、缩放、平移、剪裁、裁剪、翻转
  2. 像素变换:如修改颜色、亮度、对比度、饱和度、色相、高斯模糊(模拟对焦失败)、增加噪声、马赛克
  3. 语义增强(暂时不用):mixup,对图像进行结构性改造、cutout随机遮挡等

此外,在数据极少的场景长,常常用生成模型来扩充数据集,如GAN、VAE等。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform  # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform  # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)#使用设备: cuda
#Files already downloaded and verified

注意数据增强一般是不改变每个批次的数据量,是对原始数据修改后替换原始数据。其中该数据集事先知道其均值和标准差,如果不知道,需要提前计算下。

二、 CNN模型

卷积的本质:通过卷积核在输入通道上的滑动乘积,提取跨通道的空间特征。所以只需要定义几个参数即可

  1. 卷积核大小:卷积核的大小,如3x3、5x5、7x7等。
  2. 输入通道数:输入图片的通道数,如1(单通道图片)、3(RGB图片)、4(RGBA图片)等。
  3. 输出通道数:卷积核的个数,即输出的通道数。如本模型中通过 32→64→128 逐步增加特征复杂度
  4. 步长(stride):卷积核的滑动步长,默认为1。
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)

上述定义CNN模型中:

  1. 使用三层卷积+池化结构提取图像特征
  2. 每层卷积后添加BatchNorm加速训练并提高稳定性
  3. 使用Dropout减少过拟合

可以把全连接层前面的不理解为神经网络的一部分,单纯理解为特征提取器,他们的存在就是帮助模型进行特征提取的。

2.1 batch归一化

Batch 归一化是深度学习中常用的一种归一化技术,加速模型收敛并提升泛化能力。通常位于卷积层后。

卷积操作常见流程如下:

  1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层
  2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

其中,BatchNorm 应在池化前对空间维度的特征完成归一化,以确保归一化统计量基于足够多的样本(空间位置),避免池化导致的统计量偏差

旨在解决深度神经网络训练中的内部协变量偏移问题:深层网络中,随着前层参数更新,后层输入分布会发生变化,导致模型需要不断适应新分布,训练难度增加。就好比你在学新知识,知识体系的基础一直在变,你就得不断重新适应,模型训练也是如此,这就导致训练变得困难,这就是内部协变量偏移问题。

通过对每个批次的输入数据进行标准化(均值为 0、方差为 1),想象把一堆杂乱无章、分布不同的数据规整到一个标准的样子。

  1. 使各层输入分布稳定,让数据处于激活函数比较合适的区域,缓解梯度消失 / 爆炸问题;
  2. 因为数据分布稳定了,所以允许使用更大的学习率,提升训练效率。
阶段均值/方差来源参数更新
训练阶段基于当前批次数据计算实时更新 gammagamma、betabeta
推理阶段使用训练集的全局统计量(如滑动平均后的均值和方差)不更新参数,直接使用固定值

深度学习的归一化有2类:

  1. Batch Normalization:一般用于图像数据,因为图像数据通常是批量处理,有相对固定的 Batch Size ,能利用 Batch 内数据计算稳定的统计量(均值、方差 )来做归一化。
  2. Layer Normalization:一般用于文本数据,本数据的序列长度往往不同,像不同句子长短不一,很难像图像那样固定 Batch Size 。如果用 Batch 归一化,不同批次的统计量波动大,效果不好。层归一化是对单个样本的所有隐藏单元进行归一化,不依赖批次。

ps:这个操作在结构化数据中其实是叫做标准化,但是在深度学习领域,习惯把这类对网络中间层数据进行调整分布的操作都叫做归一化 。

2.2 特征图

卷积层输出的叫做特征图,通过输入尺寸和卷积核的尺寸、步长可以计算出输出尺寸。可以通过可视化中间层的特征图,理解 CNN 如何从底层特征(如边缘)逐步提取高层语义特征(如物体部件、整体结构)。MLP是不输出特征图的,因为他输出的一维向量,无法保留空间维度

特征图就代表着在之前特征提取器上提取到的特征,可以通过 Grad-CAM方法来查看模型在识别图像时,特征图所对应的权重是多少。-----深度学习可解释性

我们在后续介绍。下面接着训练CNN模型

2.3 调度器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)

ReduceLROnPlateau调度器适用于当监测的指标(如验证损失)停滞时降低学习率。是大多数任务的首选调度器,尤其适合验证集波动较大的情况

这种学习率调度器的方法相较于之前只有单纯的优化器,是一种超参数的优化方法,它通过调整学习率来优化模型。

常见的优化器有 adam、SGD、RMSprop 等,而除此之外学习率调度器有 lr_scheduler.StepLR、lr_scheduler.ExponentialLR、lr_scheduler.CosineAnnealingLR 等。

scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)  
# 每5个epoch,LR = LR × 0.1  scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20, 30], gamma=0.5)  
# 当epoch=10、20、30时,LR = LR × 0.5  scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)  
# LR在[0.0001, LR_initial]之间按余弦曲线变化,周期为2×T_max  

可以把优化器和调度器理解为调参手段,学习率是参数

注意,优化器如adam虽然也在调整学习率,但是他的调整是相对值,计算步长后根据基础学习率来调整。但是调度器是直接调整基础学习率。

# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")
开始使用CNN训练模型...
Epoch: 1/20 | Batch: 100/782 | 单Batch损失: 1.6939 | 累计平均损失: 2.0402
Epoch: 1/20 | Batch: 200/782 | 单Batch损失: 1.7632 | 累计平均损失: 1.9162
Epoch: 1/20 | Batch: 300/782 | 单Batch损失: 1.6051 | 累计平均损失: 1.8418
Epoch: 1/20 | Batch: 400/782 | 单Batch损失: 1.6624 | 累计平均损失: 1.7934
Epoch: 1/20 | Batch: 500/782 | 单Batch损失: 1.7259 | 累计平均损失: 1.7492
Epoch: 1/20 | Batch: 600/782 | 单Batch损失: 1.3839 | 累计平均损失: 1.7149
Epoch: 1/20 | Batch: 700/782 | 单Batch损失: 1.7046 | 累计平均损失: 1.6879
Epoch 1/20 完成 | 训练准确率: 38.46% | 测试准确率: 54.70%
Epoch: 2/20 | Batch: 100/782 | 单Batch损失: 1.5352 | 累计平均损失: 1.4148
Epoch: 2/20 | Batch: 200/782 | 单Batch损失: 1.3239 | 累计平均损失: 1.3802
Epoch: 2/20 | Batch: 300/782 | 单Batch损失: 1.4556 | 累计平均损失: 1.3511
Epoch: 2/20 | Batch: 400/782 | 单Batch损失: 1.2608 | 累计平均损失: 1.3269
Epoch: 2/20 | Batch: 500/782 | 单Batch损失: 0.9699 | 累计平均损失: 1.3041
Epoch: 2/20 | Batch: 600/782 | 单Batch损失: 1.1444 | 累计平均损失: 1.2882
Epoch: 2/20 | Batch: 700/782 | 单Batch损失: 1.0800 | 累计平均损失: 1.2723
Epoch 2/20 完成 | 训练准确率: 54.43% | 测试准确率: 65.78%
Epoch: 3/20 | Batch: 100/782 | 单Batch损失: 1.4134 | 累计平均损失: 1.1310
Epoch: 3/20 | Batch: 200/782 | 单Batch损失: 1.1853 | 累计平均损失: 1.1286
Epoch: 3/20 | Batch: 300/782 | 单Batch损失: 1.3804 | 累计平均损失: 1.1145
Epoch: 3/20 | Batch: 400/782 | 单Batch损失: 0.9816 | 累计平均损失: 1.1048
Epoch: 3/20 | Batch: 500/782 | 单Batch损失: 1.0868 | 累计平均损失: 1.1030
Epoch: 3/20 | Batch: 600/782 | 单Batch损失: 1.0686 | 累计平均损失: 1.0918
Epoch: 3/20 | Batch: 700/782 | 单Batch损失: 0.7925 | 累计平均损失: 1.0868
Epoch 3/20 完成 | 训练准确率: 61.76% | 测试准确率: 69.60%
...
Epoch: 20/20 | Batch: 500/782 | 单Batch损失: 0.8277 | 累计平均损失: 0.6376
Epoch: 20/20 | Batch: 600/782 | 单Batch损失: 0.7361 | 累计平均损失: 0.6385
Epoch: 20/20 | Batch: 700/782 | 单Batch损失: 0.5281 | 累计平均损失: 0.6383
Epoch 20/20 完成 | 训练准确率: 77.61% | 测试准确率: 80.98%训练完成!最终测试准确率: 80.98%

以CIFAR-10为例,假设两者均使用2层隐藏层:

模型结构参数规模特征提取方式计算效率典型准确率
MLP3072→1024→512→10
≈370万参数
全连接,无空间感知每次计算需遍历所有参数50-55%
CNN(简单)3×3卷积→池化→全连接
≈10万参数
局部感知+权值共享卷积核复用计算,效率高70-80%

@浙大疏锦行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/web/92672.shtml
繁体地址,请注明出处:http://hk.pswp.cn/web/92672.shtml
英文地址,请注明出处:http://en.pswp.cn/web/92672.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理

摘要:本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。Tips:点击「阅读原文」跳转阿里云实时…

运维巡检单(文档)

1 运维巡检表格 1.1 每日巡检记录单 1.2 周巡检报告 1.3 季度巡检报告 1.4 远程服务记录单 1.5 现场维护记录单 1.6 现场运维巡检服务单 1.7 服务器巡检记录 1.8 网络设备巡检记录 1.9 视频会议系统检测表 1.10 机房巡检报告 1.11 运维服务统计表 1.12 运维服务交接…

BLDC直流无刷电机工作原理

1.介绍什么是BLDC?BLDC(Brushless Direct Current Motor,无刷直流电机)是一种采用电子换向替代传统机械电刷和换向器的直流电机,兼具直流电机的调速性能和交流电机的结构优势在这之前我们先了解一般电机的分类以及直流…

Rust 实战四 | Traui2+Vue3+Rspack 开发桌面应用:通配符掩码计算器

往期回顾 Rust 实战三 | HTTP 服务开发及 Web 框架推荐Rust 实战二 | 开发简易版命令行工具 grepRust 实战一 | 用 RustRover 开发猜数字游戏Rust 安装与版本更新 代码开源地址:https://github.com/0604hx/rust-journey、通配符掩码计算器 学习一门编程语言&#…

大型语言与进化算法潜在研究方向与挑战

[1] WANG C, ZHAO J, JIAO L, 等. When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges[A/OL]. arXiv, 2025[2025-08-07]. http://arxiv.org/abs/2401.10510. DOI:10.48550/arXiv.2401.10510. 这篇文章《当大型语言模型遇到进化算…

计算二分类误差时的常见错误及解决方案

计算二分类误差时的常见错误及解决方案 在二分类任务中使用 error sum(y ! (y_hat > 0.5)) 计算分类错误时,可能遇到以下问题及解决方案: 1. 数据类型不匹配错误 问题:真实标签 y 和预测值 y_hat 的数据类型不一致(如 y 是整数…

uniapp-vue2导航栏全局自动下拉变色

全局自动下拉变色解决方案 雀语文章地址 📖 项目简介 这是一个基于 Vue.js 和 uni-app 的全局自动下拉变色解决方案,通过全局 mixin 实现页面滚动时导航栏的自动颜色变化效果。 ✨ 核心特性 ● 🎯 全局自动生效:无需在每个页面手动…

自有域名功能详解——安全可控的企业级访问方案

ZeroNews 推出自有域名穿透功能,支持用户将已备案域名与内网服务绑定,实现专业级访问控制。本文将系统解析其核心能力与操作逻辑。功能价值1. 所有权掌控使用企业自有域名而非第三方子域名,强化品牌一致性及管理权限。2. 安全合规强制 TLS 加…

Python驱动的无人机多光谱-点云融合技术在生态三维建模与碳储量/生物量/LULC估算中的全流程实战

随着生态学、林学、地理信息科学等多个学科对“结构—功能”一体化研究的共同推进,无人机多光谱与结构光摄影测量(SfM)技术已经从早期实验室验证阶段,走向区域尺度精细生态监测与资源清查的主流工具。过去十年,厘米级空…

JDY-31蓝牙SPP串口透传模块

一、产品简介与应用 JDY-31蓝牙基于蓝牙3.0 SPP设计,这样可以支持Windows、Linux、android数据透传, 工作频段2.4GHZ,调制方式GFSK,最大发射功率8db,最大发射距离30米,支持用户通过 AT命令修改设备名、波特…

模块--继电器

继电器模块详解 继电器,是一种常见的电控置装置,其应用几乎无处不在。在家庭生活中,继电器被广泛应用于照明系统,电视机,空调等电器设备的控制,在工业领域,它们用于控制电机,泵站,生产等高功率设备的运行;继电器还在通信网络,交通系统以及医疗设备中发挥着重要作用。…

Error: error:0308010C:digital envelope routines::unsupported at new Hash

1.报错 这个错误通常与 Node.js 的版本有关。从报错信息中可以看到,使用的 Node 版本是 v22.2.0。 该错误是因为 Node.js v17 及以上版本使用了 OpenSSL 3.0,而一些旧的加密算法或方式在 OpenSSL 3.0 中不再支持。 在项目中,通常是因为 webpa…

OpenAI开发者平台快速入门与API实践指南

OpenAI开发者平台快速入门与API实践指南 一、平台简介 OpenAI开发者平台为开发者提供了强大的人工智能API接口,能够在短时间内实现文本生成、图像识别、音频处理等多种AI能力。本文将详细介绍如何快速上手,发起API请求,并讨论模型选型、功能…

从 GPT‑2 到 gpt‑oss:解析架构的迭代

From GPT-2 to gpt-oss: Analyzing the Architectural Advances 原文 https://magazine.sebastianraschka.com/p/from-gpt-2-to-gpt-oss-analyzing-the OpenAI 本周刚发布了两款新的开放权重的大语言模型:gpt-oss-120b 和 gpt-oss-20b,这是自 2019 年 GP…

一周学会Matplotlib3 Python 数据可视化-线条 (Line)

锋哥原创的Matplotlib3 Python数据可视化视频教程: https://www.bilibili.com/video/BV1UhtuzcEqX/ 课程介绍 本课程讲解利用python进行数据可视化 科研绘图-Matplotlib,学习Matplotlib图形参数基本设置,绘图参数及主要函数,以及…

09-netty基础-手写rpc-原理-01

netty系列文章: 01-netty基础-socket02-netty基础-java四种IO模型03-netty基础-多路复用select、poll、epoll04-netty基础-Reactor三种模型05-netty基础-ByteBuf数据结构06-netty基础-编码解码07-netty基础-自定义编解码器08-netty基础-自定义序列化和反序列化09-n…

Windows 小知识:Winodws 文件与文件夹名不区分大小写

专栏导航 上一篇:Windows 编程辅助技能:速览定义 回到目录 下一篇:无 本节前言 本节来分享一个小的知识点,具体地,我们在下面来细说。 一. Windows 系统的文件与文件夹的名字,不区分大小写 请大家…

嵌套-列表存储字典,字典存储列表,字典存储字典

字典存储列表aliens []for alien in range(10):new_alien {"id": alien, "color": "green", "speed": "slow" , "points": 20}aliens.append(new_alien)for alien in aliens[:5]:print(alien) print("...&…

个人笔记Mybatis2

4.配置解析4.1核心配置文件mybatis-config.xmlMyBatis配置包含对MyBatis行为方式有显著影响的设置和属性在 MyBatis 中有两种类型的事务管理器 (也就是 type"[JDBC|MANAGED]”configuration(配置) properties(属性) settings(设置) typeAliases(类型别名) typeHandlers(类…

使用 Maxwell 和 RabbitMQ 监控 Mysql Flowable 表变更

为什么需要监控数据库变化?当 Flowable 表中的数据发生变化(例如插入新任务、更新状态或删除记录),我们可能需要触发其他操作,比如通知用户、更新仪表盘或启动新流程。Maxwell 可以读取 MySQL 的二进制日志&#xff08…