IP地址数量限制

        我们知道,IP地址(IPv4)是一个4字节32位的整数,那么一共只有2^32也就是接近43亿个IP地址,而TCP/IP协议栈规定,每台主机只能有一个IP地址,这就意味着,一共只有不到43亿台主机能接入互联网吗?

        实际上,由于一些特殊的IP地址(主机号全0代表网络号,主机号全1代表广播地址,127.*用于本地环回测试)的存在,IP地址实际数量要比这个数更小一些,并且IP地址并不是按主机台数分配的,每张网卡都需要配置一个或多个IP地址,这就导致了一个很尴尬的问题:IP地址不够用了!这时候有三种方式来解决:

  • 动态分配IP地址:只给接入网络的设备分配IP地址,因此即使同一MAC地址的设备,每次接入网络分配到的IP地址也不一定是相同的。
  • NAT(Net Address Transimision):也就是网络地址转换,这是我们今天要重点学习的。
  • IPv6:这并不是IPv4的简单升级,两者是互不兼容的协议,用16字节128位的整数表示一个IP地址,理论上能够给沙漠中的每一粒沙子都分配一个IP地址,但目前尚未普及。

私有IP与公网IP

        如果一个组织内部组建局域网,IP地址只用于局域网内通信,而不连接互联网,那么理论上可以使用任意的IP地址,但如果想要接入Internet,就必须遵守RFC 1918对于组建局域网的私有IP地址的限制:

  • 10.*:前8位是网络号,共16,777,216个地址(大家在学校的时候,IP地址应该都是10开头的)
  • 172.16.*到172.31.*:前12位是网络号,共1,048,576个地址
  • 192.168.*:前16位是网络号,共65,536个地址(大家在家里的时候,IP地址应该都是192.168开头的)
  • 包含在以上范围的,都成为私有IP,其余的则是公网IP

大家可能觉得奇怪,不是要讲解决IPv4地址数量不足的问题吗,怎么扯到了私有IP和公网IP了,事实上,这是NAT技术能解决地址数量不足的一个很关键的要素:如果私有IP地址只在局域网内使用,那么不同局域网就可以出现重复的私有IP了,那么可用的IP数量就大大增加了!

        那么问题来了,局域网中的主机怎么和公网进行通信呢?所以NAT技术实际上做的就是:在子网内的主机需要与外网进行通信时,路由器将IP报文首部的IP地址进行替换,经过一次次路由,最终数据包中的源IP地址成为一个公网IP,可以在公网中访问目标公网IP了。

NAT技术

        前面提到了路由器将IP报文首部的IP地址替换,那么这个替换过程长啥样呢?让我们接着往下学,首先了解一下关于路由器的一些相关知识:

  • 一个路由器可以配置至少两个IP地址,一个WAN口(广域网接口)IP,一个或一个以上的LAN口(局域网接口)IP。
  • 路由器LAN口连接的主机都从属于这个路由器的某个子网中。
  • 子网内的主机IP地址不能重复,但不同路由器的子网间可以出现重复的IP地址。
  • 每个家用路由器实际上又作为运营商路由器子网中的一个节点,并且这样的运营商路由器可能有很多级,最外层的出入口运营商路由器的WAN口IP就是一个公网IP了。

        现在再回过头表述一下什么是NAT技术:子网主机需要和外网通信时,家路由器将IP报头首部的源IP地址替换为自己的WAN口IP,这样主机替换,最终数据包中的源IP地址称为一个公网IP。

        所以现在我们也就大概能够理解为什么我们的宽带欠费后,运营商可以让我们上不了网了,因为我们的每台主机其实都是在内网中,要想访问公网,那就必须先通过NAT转化为公网IP,而运营商路由器识别出欠费,直接不帮我们进行NAT,也就自然断网了。


        通过前面的学习,我们解决了一个问题:局域网内的主机如何向公网的服务器发送请求。但是还有一个很重要的问题:服务器要怎么把响应返回给服务器呢?

        按照我们前面的说法,局域网中有那么多的内网主机发送到服务器的请求的IP都是相同的(出入口运营商服务器的WAN口IP),服务器返回请求的目的IP都是运营商出入口NAT路由器,那NAT路由器怎么判定要把数据包交给哪个局域网的主机呢?

        这个时候NAPT(网络地址端口转换)闪亮登场了,NAT路由器在进行源IP替换时,会将报文的源IP+port与自己替换的WAN口IP+port的映射关系存到一张转化表里,这很重要,因为:内网IP在局域网中唯一,port在主机上唯一;公网IP在公网中唯一,port在路由器上唯一。两个唯一值存在一张表里,就意味着两者互为键值!建立起这张转换表后,公网就可以访问到内网了!

(这个关联表是由NAT服务器自动维护的,对于TCP,在建立连接时生成表项,断开连接后删除表项)

内网穿透

        在学习了NAT技术后,我们就可以开始学习内网穿透了。首先,什么是内网穿透?其实内网穿透就是:一台局域网中的主机,通过一个在公网的主机,访问另一个局域网中的主机。

        那么内网穿透的原理是什么呢?其实我们学习了NAT和NAPT后,就非常容易理解了:

       当客户机与服务器建立好转换表后,只要服务器1能够给服务器2提供这样的服务:服务器2发来的某个端口的数据全部转发到客户机,就可以实现让服务器2通过公网访问客户机了。

        内网穿透的价值在于,可以通过它实现远程办公/跨区域、部门的协作。那么为了更好地理解内网穿透的过程,接下来我们一起来做一个实验!部署实现一下内网穿透~

部署与测试内网穿透

        首先,说一下我的实验环境:

  • 客户机:Ubuntu 20.04虚拟机(VMware设置为NAT模式)
  • 服务器1:阿里云服务器(因为我们需要公网IP)
  • 服务器2:Windows上的xterminal(SSH客户端软件)
  • 转发功能:通过frp实现的,因为它用起来很简单

frp下载:下载的是linux amd64
Release v0.58.1 · fatedier/frphttps://github.com/fatedier/frp/releases/tag/v0.58.1        简单讲讲实验步骤:

  • 在客户机上部署、安装、配置frpc(frp的客户端),然后把本地ssh 22号端口映射到frps的xxx端口(如6000)
  • 在云服务器1上部署配置frps(frp的服务器),设置让xxx端口(如7000)与客户机上的frpc进行通信
  • 服务器2此时通过云服务器1的7000端口就能访问到客户机的ssh服务了!

我们下载好这个压缩包之后,解压就能得到:

其中frps和frpc分别是frp的服务器和客户端,而.toml文件则是对服务器/客户端的配置信息。

frpc.toml:

  • serverAddr和serverPort分别是frps的IP和port
  • localPort和remotePort表示将本机的22号端口(ssh专用)映射到frps主机的6000号端口(也可以自己设置)——其实就是frps服务器会将6000号端口收到的请求都转发到frpc的22号端口,收到应答后再转发回给请求方。

frps.toml:

  • frps上的配置信息比较简单,只要设置好要与frpc进行通信的端口即可

启动frps:

启动frpc:

值得一提的是,我们直接运行frpc并不会使用.toml文件中的配置,必须加-c选项显式指定。

此时我们可以发现frps这边显示连接成功了(我还配置了nginx,不过步骤类似,所以只和大家说ssh的操作):

接下来我们通过Xterminal来访问云服务器的6000端口,如果和我们设想一样的话,应该就能ssh登录客户机:

可以看到,XTerminal启动后,直接就是在客户机的~下:

我们在这下面新建一个文件,可以看到确实多了个文本文件:

        ok,本篇文章到这里也接近尾声了,最后再给大家梳理下流程:服务器1是一台云服务器,有自己的公网IP,服务器2是windows机器用的是内网IP,而客户机是虚拟机用的也是内网IP。frp为我们做的事情是:启动frps(服务器)后,启动frpc(客户端)与frps连接,此时由于内网主机主动通过NAT技术与公网主机建立了连接,那么通过NAPT技术我们就可以实现公网主机访问内网主机了,并且frps会把发到6000号端口的数据都转发到frpc的22号端口,接下来另一台内网主机(ssh客户端)就可以通过访问云服务器的6000号端口来ssh登录客户机了!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/web/73379.shtml
繁体地址,请注明出处:http://hk.pswp.cn/web/73379.shtml
英文地址,请注明出处:http://en.pswp.cn/web/73379.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

时隔多年,终于给它换了皮肤,并正式起了名字

时隔多年,终于更新了直播推流软件UI,并正式命名为FlashEncoder。软件仍使用MFC框架,重绘了所有用到的控件,可以有效保证软件性能,也便于后续进一步优化。 下载地址:https://download.csdn.net/download/Xi…

代码随想录第六十二天| Floyd 算法精讲 A * 算法精讲 (A star算法) 最短路算法总结篇

Floyd 算法精讲 题目描述 小明希望在公园散步时找到从一个景点到另一个景点的最短路径。给定公园的景点图,包含 N 个景点和 M 条双向道路,每条道路有已知的长度。小明有 Q 个观景计划,每个计划包含一个起点和终点,求每个计划的最…

如何避免测试环境不稳定导致的误报

避免测试环境不稳定导致误报的核心方法包括搭建独立稳定的测试环境、使用环境监控工具、建立环境变更管理机制、定期维护更新测试环境以及提升团队的环境管理意识。 其中,搭建独立稳定的测试环境尤为关键。独立的测试环境能有效隔离其他环境的干扰,保证测…

初级:I/O与NIO面试题深度剖析

一、引言 在Java开发中,I/O(输入/输出)操作是程序与外部设备(如磁盘、网络等)进行数据交互的重要方式。传统的I/O模型在处理大规模数据和高并发场景时存在一定的局限性,而NIO(New I/O&#xff…

Axure RP9教程 :轮播图(动态面板) | 头部锁定

文章目录 引言I 轮播图操作步骤在画布中添加一个动态面板设置面板状态II 头部锁定将头部区域选中,右键组合或用Ctrl+G快捷键;将组合的头部区域,右键创建动态面板;引言 动态面板的功能十分强大,比如:拥有独立的内部坐标系,有多个状态; Banner的案例中会用到动态面板多个…

超微服务器主板重置ipmi登录密码

超微服务器主板重置ipmi登录密码 超微服务器的ipmi登录密码不对,需要重置但是bios内并没有找到可以设置的选项。 以下是解决办法: 安装IPMITOOL apt install ipmitool -y执行以下命令加载模块: modprobe ipmi_watchdog modprobe ipmi_po…

蓝桥杯第十届 数的分解

题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 把 2019 分解成 3 个各不相同的正整数之和,并且要求每个正整数都不包含数字 2 和 4,一共有多少种不同的分解方法? 注意交换 3 个…

Docker入门篇4:查看容器资源、查看容器详细信息、查看容器日志、查看容器内运行的进程

大家好我是木木,在当今快速发展的云计算与云原生时代,容器化技术蓬勃兴起,Docker 作为实现容器化的主流工具之一,为开发者和运维人员带来了极大的便捷 。下面我们一起开始入门第四篇:查看容器资源、查看容器详细信息、…

基于数据挖掘的网络入侵检测关键技术研究

标题:基于数据挖掘的网络入侵检测关键技术研究 内容:1.摘要 随着互联网的迅速发展,网络安全问题日益严峻,网络入侵行为对个人、企业和国家的信息安全构成了巨大威胁。本文的目的是研究基于数据挖掘的网络入侵检测关键技术,以提高网络入侵检测…

中学数学几百年重大错误:将无穷多各异假R误为R——两数集相等的必要条件

中学数学几百年重大错误:将无穷多各异假R误为R——两数集相等的必要条件 黄小宁 设集A{x}表A各元均由x代表,相应变量x的变域是A。其余类推。本人多年前公开发表的论文中有定理: h定理(两数集相等的必要条…

react-activation 实现页面保活记录

这里写目录标题 一、安装插件(可选)1、react-activation (推荐)2、umi-plugin-keep-alive 二、AliveScope的两种配置方式1、在src/app.ts 中配置2、在src/layout/index.tsx中配置 三、umi中的配置四、使用问题记录1、drop使用不生…

STM32使用红外避障传感器

1.1 介绍: 该传感器模块对环境光适应能力强,其具有一对红外线发射与接收管,发射管发射出一定频率的红外线,当检测方向遇到障碍物(反射面)时,红外线反射回来被接收管接收,经过比较器…

python tkinter 开发蓍草占卜系统

1. 项目概述 1.1 简介 蓍草占卜是中国传统的占卜方法,用于演算六十四卦。本系统通过现代编程技术,将传统的蓍草占卜方法数字化,提供一个准确、便捷的占卜工具。 蓍草占卜,作为中国古代的一种传统占卜方法,承载着深厚…

Linux搭建本地时间服务器及时间同步

搭建一个本地时间服务器,使得局域网内主机时间保持一致。 设置正确时间 # 设置系统时间 date -s "2025-03-25 17:31:00" # 将系统时间写入硬件时钟 hwclock --systohc时间服务器设置 系统应该预先安装chronyd 要允许 所有客户端 通过你的 chronyd 服务器…

2025-3-25算法打卡

一,走迷宫 1.题目描述: 给定一个 NMNM 的网格迷宫 GG。GG 的每个格子要么是道路,要么是障碍物(道路用 11 表示,障碍物用 00 表示)。 已知迷宫的入口位置为 (x1,y1)(x1​,y1​),出口位置为 (x…

力扣刷题39. 组合总和

39. 组合总和 - 力扣(LeetCode) 需要定义一个index变量用来记录访问数组的下标,每次递归进行传参,在搜索过程中,因为为了避免重复数据,而且允许一个元素的重复出现,传入index时传入当前遍历的i…

ISIS-3 LSDB链路状态数据库同步

上一章我们介绍了ISIS的邻居建立关系以及ISIS的路由器角色有哪些,在不同的网络类型当中建立邻居关系有什么不同,并且以实验案例抓包的形式给大家进一步介绍了建立的过程。 这一章我们来介绍ISIS中是如何实现链路状态数据库同步的,与OSPF的链路状态同步有什么不同,在不同网络类…

Opencv计算机视觉编程攻略-第三节 图像颜色处理

第三节 图像颜色处理 1.颜色比较2.GrabCut分割图像3.色调、饱和度以及亮度 1.颜色比较 主要实现逐像素的颜色比较,其中注意BGR颜色空间不连续,不利于颜色提取和区分,转换到Lab空间: int getColorDistance(const cv::Vec3b& c…

BoomCut AI 技术创建本地化的营销视频

目录 视频翻译实验 交换实验 数字人实验 核心功能与技术亮点 适用场景 BoomCut 提供用于视频翻译、数字人等的 AI 技术,以快速创建本地化的营销视频 视频翻译实验 电影电影哪吒之魔童降世换成西班牙语

论华为 Pura X 折叠屏性能检测

在科技浪潮中,折叠屏手机以其创新形态掀起市场热潮。华为 Pura X 作为华为最新折叠手机,承载前沿科技与精湛工艺,成为行业焦点。它融合先进折叠屏技术与优质材质,致力于打破传统手机使用边界,为用户开启全新体验。但产…