基于  C/S :客户端(client)/服务器端(server)

1.流程

       

2.  函数接口

所有函数所需头文件:

#include <sys/types.h> 
#include <sys/socket.h>

系统定义好了用来存储网络信息的结构体

ipv4通信使用的结构体:struct sockaddr_in

我们只需要直接定义结构体变量即可

2.1 创建套接字socket()

int socket(int domain, int type, int protocol);
功能:创建套接字
参数:domain:协议族AF_UNIX, AF_LOCAL  本地通信AF_INET            ipv4AF_INET6            ipv6type:套接字类型SOCK_STREAM:流式套接字SOCK_DGRAM:数据报套接字SOCK_RAW:原始套接字protocol:协议  一般填0 自动匹配底层 根据type系统默认自动帮助匹配对应协议传输层:IPPROTO_TCP、IPPROTO_UDP、IPPROTO_ICMP网络层:htons(ETH_P_IP|ETH_P_ARP|ETH_P_ALL)返回值:成功 文件描述符-- > sockfd (用于连接)失败 -1,更新errno

 注意:TCP服务器端有两类文件描述符 !!!
        一类用于连接的文件描述符(sockfd-->socket函数返回值) 只有一个
        一类用于通信的文件描述符(acceptfd-->accept函数返回值) 可以多个

2.2绑定套接字bind()

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
功能:绑定
参数:socket:套接字addr:用于通信结构体 (提供的是通用结构体,需要根据选择通信方式,填充对应结构体-通信当时socket第一个参数确定)   addrlen:结构体大小   
返回值:成功 0   失败-1,更新errno

由于系统定义好的记录网络信息的结构体是struct sockaddr_in类型,因此,bind第二个参数使用时结构体变量地址的时候要强制类型转换

2.3监听listen()

int listen(int sockfd, int backlog);
功能:监听,将主动套接字变为被动套接字
参数:sockfd:套接字backlog:(目前已无具体作用,写个正数即可)同时响应客户端请求链接的最大个数,不能写0.不同平台可同时链接的数不同,一般写6-8个(队列1:保存正在连接)(队列2,连接上的客户端)返回值:成功 0   失败-1,更新errno 

注意:listen作用:主动套接字变为被动套接字!!!

2.4接收客户端连接请求 accept()

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
accept(sockfd,NULL,NULL);
功能:阻塞函数,阻塞等待客户端的连接请求,如果有客户端连接,
则accept()函数返回,返回一个用于通信的套接字文件描述符;
参数:Sockfd :套接字addr: 链接客户端的ip和端口号如果不需要关心具体是哪一个客户端,那么可以填NULL;addrlen:结构体的大小如果不需要关心具体是哪一个客户端,那么可以填NULL;
返回值: 成功:文件描述符; //用于通信失败:-1,更新errno

2.5接受消息recv()

ssize_t recv(int sockfd, void *buf, size_t len, int flags);
功能: 接收数据 
参数: sockfd: acceptfd ;buf  存放位置len  大小flags  一般填0,相当于read()函数MSG_DONTWAIT  非阻塞
返回值: < 0  失败出错  更新errno==0  表示客户端退出>0   成功接收的字节个数

2.6发送消息send()

ssize_t send(int sockfd, const void *buf, size_t len, int flags);
功能:发送数据
参数:sockfd:socket函数的返回值buf:发送内容存放的地址len:发送内存的长度flags:如果填0,相当于write();

2.7连接服务器connect()

int connect(int sockfd, const struct sockaddr *addr,socklen_t addrlen);
功能:用于连接服务器;
参数:sockfd:socket函数的返回值addr:填充的结构体是服务器端的;addrlen:结构体的大小
返回值 -1 失败,更新errno正确 0 

2.8 关闭套接字 close()

即关闭套接字文件

close(文件描述符);

3.服务器端

 按照流程:

(1)创建流式套接字socket()

     

(2)指定网络信息

 (3)绑定套接字bind()

(4) 监听listen()

(5) 等待客户连接信息accept()

 注意:

在服务器端使用客户的网络信息时:

(6)收发消息 send() recv()

(7) 关闭套接字

源代码:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <stdlib.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <unistd.h>//  $$ 服务器端 $$  int main(int argc, char const *argv[])
{/*创建流式套接字*/int sockfd = socket(AF_INET, SOCK_STREAM, 0);if (sockfd < 0){perror("socket err");return -1;}else{printf("创建套接字成功\n");}/*指定服务器网络信息 使用的协议族(IPv4-->AF_INET)、IP地址、端口号等*/// 服务器的网络信息通过一个系统定义好的结构体来描述struct sockaddr_in saddr;                     // 定义一个结构体变量saddr.sin_family = AF_INET;                   // 确定协议族-->IPv4saddr.sin_port = htons(atoi(argv[1]));        // 确定使用的端口号saddr.sin_addr.s_addr = inet_addr("0.0.0.0"); // 确定服务器IP地址/*绑定套接字*/int t1 = bind(sockfd, (struct sockaddr *)&saddr, sizeof(saddr));if (t1 < 0){perror("bind err");return -1;}else{printf("绑定套接字成功\n");}/*监听*/int t2 = listen(sockfd, 6); // 将默认的主动套接字变为被动套接字if (t2 < 0){printf("listen err");return -1;}else{printf("监听中\n");}int acceptfd;char buf[128] = "";int ret;// 定义一个结构体变量来存接收到的客户信息struct sockaddr_in caddr;int len = sizeof(caddr); // len是记录客户信息的结构体的大小while (1){/*阻塞等待接收客户端的连接请求,并将连接成功的客户端信息写入到结构体变量caddr中*/acceptfd = accept(sockfd, (struct sockaddr *)&caddr, &len);if (acceptfd < 0){printf("accept err");return -1;}else{printf("等待接收客户端请求\n");}printf("客户IP:%s 端口号:%d \n", inet_ntoa(caddr.sin_addr), ntohs(caddr.sin_port));while (1){/*接收消息*/ret = recv(acceptfd, buf, 128, 0); // 0-->相当于read(acceptfd,buf,128)if (ret < 0){perror("recv err");return -1;}else if (ret == 0){printf("客户退出\n");break;}else{printf("%s 接收成功\n", buf);memset(buf, 0, sizeof(buf));}}close(acceptfd);}/* 关闭套接字 */close(sockfd);return 0;
}

4.客户端

按照流程:

(1)创建流式套接字socket()

(2)指定服务器网络信息

(3)连接服务器connect()

(4)发送接受消息 send()  recv()

(5)关闭套接字

源代码:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
//  $$ 客户端 $$  int main(int argc, char const *argv[])
{/*创建流式套接字*/int sockfd = socket(AF_INET, SOCK_STREAM, 0);if (sockfd < 0){perror("socket err");return -1;}else{printf("创建套接字成功\n");}/*指定服务器的网络信息*/struct sockaddr_in saddr;saddr.sin_family = AF_INET;saddr.sin_port = htons(atoi(argv[1]));saddr.sin_addr.s_addr = inet_addr(argv[2]);/* 请求连接服务器*/int t = connect(sockfd, (struct sockaddr *)&saddr, sizeof(saddr));if (t < 0){perror("connect err");return -1;}else{printf("connect success\n");}char buf[128] = "";/* 发送消息 */while (1){fgets(buf, sizeof(buf), stdin);if (buf[strlen(buf) - 1] == '\n'){buf[strlen(buf) - 1] = '\0';}if (strcmp(buf, "quit") == 0){break;}send(sockfd, buf, sizeof(buf), 0); // 0-->相当于write(sockfd,buf,sizeof(buf))}/* 关闭套接字 */close(sockfd);return 0;
}

5.TCP粘包问题

tcp粘包

tcp拆包

6.三次握手四次挥手

三次握手建立连接

第一次握手:客户通过调用connect进行主动打开(active open)。这引起客户TCP发送一个SYN(表示同步)分节(SYN=J),它告诉服务器客户将在连接中发送数据的初始序列号。并进入SYN_SEND状态,等待服务器的确认。

第二次握手:服务器必须确认客户的SYN,同时自己也得发送一个SYN分节,它含有服务器将在同一连接中发送的数据的初始序列号。服务器以单个字节向客户发送SYN和对客户SYN的ACK(表示确认),此时服务器进入SYN_RECV状态。

第三次握手:客户收到服务器的SYN+ACK。向服务器发送确认分节,此分节发送完毕,客户服务器进入ESTABLISHED状态,完成三次握手。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/pingmian/83610.shtml
繁体地址,请注明出处:http://hk.pswp.cn/pingmian/83610.shtml
英文地址,请注明出处:http://en.pswp.cn/pingmian/83610.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

各个布局的区别以及示例

各个布局的区别以及示例 在前端开发中&#xff0c;常见的布局方式主要有以下几种&#xff0c;每种布局都有其适用场景和特点&#xff1a; 1. 普通文档流&#xff08;Normal Flow&#xff09; 特点&#xff1a;默认布局方式&#xff0c;元素按照HTML顺序依次排列。适用场景&am…

性能优化 - 理论篇:常见指标及切入点

文章目录 引言一、 Java 性能优化的核心思路二、为什么要度量&#xff1f;三、常用性能衡量指标详解3.1 吞吐量与响应速度3.2 响应时间的具体度量&#xff1a;平均响应时间与百分位数3.3 并发量3.4 秒开率&#xff08;页面秒开&#xff09;3.5 正确性&#xff08;功能可用性&am…

第2讲、Odoo深度介绍:开源ERP的领先者

一、Odoo深度介绍&#xff1a;开源ERP的领先者 Odoo&#xff0c;其前身为OpenERP&#xff0c;是一款在全球范围内广受欢迎的开源企业管理软件套件。它不仅仅是一个ERP系统&#xff0c;更是一个集成了客户关系管理&#xff08;CRM&#xff09;、电子商务、网站构建、项目管理、…

Telerik生态整合:Kendo UI for Angular组件在WinForms应用中的深度嵌入(一)

Telerik DevCraft包含一个完整的产品栈来构建您下一个Web、移动和桌面应用程序。它使用HTML和每个.NET平台的UI库&#xff0c;加快开发速度。Telerik DevCraft提供完整的工具箱&#xff0c;用于构建现代和面向未来的业务应用程序&#xff0c;目前提供UI for ASP.NET MVC、Kendo…

2025年6月4日收获

Authorization Authorization是一种通用的、标准化的权限控制和认证的通用框架&#xff0c;它能够使跨系统和跨域的身份验证和授权管理更容易&#xff0c;使不同应用程序之间能够更轻松地实现单点登录&#xff08;SSO&#xff09;、用户身份验证和授权控制等。 在前端使用 axi…

实时数据湖架构设计:从批处理到流处理的企业数据战略升级

企业数据处理架构正在经历一场深刻的变革。从最初的数据仓库T1批处理模式&#xff0c;到如今的实时流处理架构&#xff0c;这一演进过程反映了业务对数据时效性要求的不断提升。 文章目录 第一章&#xff1a;数据湖演进历程与现状分析 第二章&#xff1a;实时数据湖核心架构剖…

iptables实战案例

目录 一、实验拓扑 二、网络规划 三、实验要求 四、环境准备 1.firewall &#xff08;1&#xff09;配置防火墙各大网卡IP并禁用 firewall和selinux &#xff08;2&#xff09;打开firewall路由转发 2.PC1&#xff08;内网&#xff09; &#xff08;1&#xff09;配置防…

macOS 连接 Docker 运行 postgres,使用navicat添加并关联数据库

下载 docker注册一个账号&#xff0c;登录 Docker创建 docke r文件 mkdir -p ~/.docker && touch ~/.docker/daemon.json写入配置&#xff08;全量替换&#xff09; {"builder": {"gc": {"defaultKeepStorage": "20GB",&quo…

docker离线镜像下载

背景介绍 在某些网络受限的环境中&#xff0c;直接从Docker Hub或其他在线仓库拉取镜像可能会遇到困难。为了在这种情况下也能顺利使用Docker镜像&#xff0c;我们可以提前下载好所需的镜像&#xff0c;并通过离线方式分发和使用。 当前镜像有&#xff1a;python-3.8-slim.ta…

Android 3D球形水平圆形旋转,旋转动态更换图片

看效果图 1、事件监听类 OnItemClickListener&#xff1a;3D旋转视图项点击监听器接口 public interface OnItemClickListener {/*** 当旋转视图中的项被点击时调用** param view 被点击的视图对象* param position 被点击项在旋转视图中的位置索引&#xff08;从0开始&a…

48V带极性反接保护-差共模浪涌防护方案

在工业自动化&#xff08;电动机驱动 / 工业机器人&#xff09;、交通基础设施&#xff08;充电桩 / 车载电子&#xff09;、安防系统&#xff08;监控摄像头 / 门禁&#xff09;、储能设备&#xff08;BMS / 离网控制器&#xff09;等领域&#xff0c;DC48V 电源因安全特低电压…

CentOS在vmware局域网内搭建DHCP服务器【踩坑记录】

1. 重新设置环境 配置dhcp服务踩了不少坑&#xff0c;这里重头搭建记录一下&#xff1a; 1.1 centos 网卡还原 如果之前搭了乱七八糟的环境&#xff0c;导致NAT模式也没法上网&#xff0c;这里重新还原 我们需要在NAT模式下联网&#xff0c;下载DHCP服务 先把centos的网卡还…

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…

Web3时代的数据保护挑战与应对策略

随着互联网技术的飞速发展&#xff0c;我们正步入Web3时代&#xff0c;这是一个以去中心化、用户主权和数据隐私为核心的新时代。然而&#xff0c;Web3时代也带来了前所未有的数据保护挑战。本文将探讨这些挑战&#xff0c;并提出相应的应对策略。 数据隐私挑战 在Web3时代&a…

从零打造算法题刷题助手:Agent搭建保姆级攻略

我用Trae 做了一个有意思的Agent 「大厂机试助手」。 点击 https://s.trae.com.cn/a/d2a596 立即复刻&#xff0c;一起来玩吧&#xff01; Agent 简介 Agent名称为大厂机试助手&#xff0c;主要功能有以下三点。 解题&#xff1a; 根据用户给出的题目给出具体的解题思路引导做…

【JavaWeb】MVC三层架构

MVC三层架构 MVC 是什么&#xff1f;三层架构的组成&#xff08;View、Controller、Model&#xff09;各层职责划分示例说明面试高频问题与参考答案 MVC&#xff08;Model-View-Controller&#xff09;是一种经典的软件设计模式&#xff0c;广泛应用于 Web 应用开发中&#xf…

嵌入式分析利器:DuckDB与SqlSugar实战

​ 一、DuckDB 的核心特性与适用场景 DuckDB 是一款 嵌入式分析型数据库&#xff08;OLAP&#xff09; &#xff0c;专为高效查询设计&#xff0c;主要特点包括&#xff1a; 列式存储与向量化引擎 数据按列存储&#xff0c;提升聚合统计效率&#xff08;如 SUM/AVG&#xf…

React---day6、7

6、组件之间进行数据传递 **6.1 父传子&#xff1a;**props传递属性 父组件&#xff1a; <div><ChildCpn name"蒋乙菥" age"18" height"1,88" /> </div>子组件&#xff1a; export class ChildCpn extends React.Component…

Windows上用FFmpeg采集摄像头推流 → MediaMTX服务器转发流 → WSL2上拉流播放

1. Windows上 FFmpeg 推流&#xff08;摄像头采集&#xff09; 设备名称可用 ffmpeg -list_devices true -f dshow -i dummy 查询&#xff0c;假设为Integrated Camera 采集推流示例&#xff08;推RTMP到MediaMTX&#xff09;&#xff1a; ffmpeg -rtbufsize 100M -f dshow …

SpringBoot1--简单体验

1 Helloworld 打开&#xff1a;https://start.spring.io/ 选择maven配置。增加SpringWeb的依赖。 Generate之后解压&#xff0c;代码大致如下&#xff1a; hpDESKTOP-430500P:~/springboot2/demo$ tree ├── HELP.md ├── mvnw ├── mvnw.cmd ├── pom.xml └── s…