导读:在构建大规模向量数据库应用时,数据组织架构的设计往往决定了系统的性能上限。Milvus作为主流向量数据库,其独特的三层架构设计——分区、分片、段,为海量向量数据的高效存储和检索提供了坚实基础。
本文通过图书馆管理系统的生动类比,系统阐述了这三个核心概念的工作机制与协作关系。分区如同按主题划分的楼层区域,实现业务维度的数据隔离;分片类似每个区域内的并行书架,提供水平扩展和负载均衡能力;段则如同书架上的可拆卸书盒,专注于存储空间优化和查询性能提升。
通过电商平台10万条商品数据的完整处理流程,文章详细展示了三层架构在实际工作中的协作过程。更重要的是,本文提供了基于硬件资源的分片数量计算公式、分区设计的最佳实践原则,以及段配置的优化策略。这些实用的配置建议能够帮助开发者避免常见的性能陷阱,在存储效率与查询性能之间找到最佳平衡点,确保Milvus系统在生产环境中的稳定高效运行。

概述

Milvus作为专业的向量数据库,采用了分区(Partition)、分片(Shard)、段(Segment)三层架构来实现高效的数据组织和查询优化。本文将通过具体的比喻和实践案例,深入解析这三种数据组织方式的工作原理和最佳实践。

关于向量数据库的选型可移步上一篇文章了解:向量数据库选型实战指南:Milvus架构深度解析与技术对比

核心概念解析

图书馆管理系统类比

为了更好地理解分区、分片、段三者之间的关系,我们可以将其类比为管理一个超大型图书馆(对应Milvus中的Collection集合),该图书馆存放着上亿本书籍。

分区(Partition):主题区域划分

分区相当于按书籍主题划分的不同楼层区域。例如:1楼科技区、2楼文学区、3楼艺术区。

分区的核心作用是实现业务层面的数据隔离,使系统能够快速定位特定类别的数据,避免全库扫描。这类似于电商平台按商品类别(电器、服装、食品)进行分区存储的策略。

分片(Shard):并行处理单元

分片相当于每个主题区内设置的多个平行书架。以科技区为例,可以分成10个结构相同的书架,每个书架存储100万本书。

分片的主要目的是实现负载均衡和水平扩展。当多个用户同时查找时,不同书架可以并行工作,显著提高系统的并发处理能力。

段(Segment):存储优化单元

段相当于每个书架上的可拆卸书盒。每个书架由多个书盒组成,新书先放入临时书盒,写满后密封成固定书盒。

段的设计目的是优化存储空间和查询性能。旧书盒可以进行压缩归档,类似于数据库将数据分块存储以便于后台合并优化。

三层架构对比分析

在这里插入图片描述

维度分区(Partition)分片(Shard)段(Segment)
层级定位逻辑划分物理分布物理存储单元
可见性用户主动创建管理系统自动分配完全由系统管理
主要目的业务数据隔离负载均衡与扩展存储优化与查询加速
操作方式手动指定查询分区自动路由请求到不同节点自动合并/压缩

实际工作流程示例

数据写入场景分析

以电商平台上传10万条商品数据为例,展示三层架构的协作过程。

分区阶段:系统首先按业务维度进行数据划分,例如按商品类别创建不同分区。

# 按商品类别创建分区
collection.create_partition("electronics")
collection.create_partition("clothing")

分片阶段:系统自动将数据均匀分配到集群的各个节点。假设集群包含3个节点,数据将自动分配到3个分片中。

在这里插入图片描述

段阶段:分片内的数据按照预设大小(通常为512MB)自动切割成多个段进行存储。

在这里插入图片描述

数据查询流程

查询过程遵循以下步骤:用户发起查询请求 → 系统定位相关分区 → 并行查询所有相关分片 → 各分片扫描对应的段 → 合并结果并排序返回。

数据合并优化

系统会自动执行段合并操作,将多个小段合并成大段以提高查询效率。这个过程类似于HBase的Compaction机制:

[Segment1(100MB)] + [Segment2(100MB)] → [SegmentMerged(200MB)]

开发最佳实践

分区设计策略

推荐的分区方案包括按时间维度分区(如2023Q1、2023Q2)和按业务线分区(如user_profiles、product_info)。

需要避免的错误做法是创建过多分区,如超过1000个分区会严重影响元数据性能。

# 良好实践:按时间分区
client.create_partition(collection_name="logs",partition_name="2024-01"
)# 错误做法:为每个用户创建单独分区(容易超过系统限制)

分片数量配置

分片数量的配置需要基于硬件资源进行合理计算。推荐使用公式:分片数 = 节点数 × CPU核心数。

错误的配置如在8核机器上设置128个分片会导致线程频繁切换,严重影响性能。正确的做法是根据实际硬件配置进行设置:

collection = Collection(name="product_images",shards_num=64,  # 8台机器 × 8核 = 64个分片partitions=["electronics","clothing", "home_appliances"]
)

段配置优化

段的配置可以通过调整系统参数来优化:

# 调整段的最大大小为1GB
client.set_property("dataCoord.segment.maxSize", "1024")
# 设置段密封比例为70%
client.set_property("dataCoord.segment.sealProportion", "0.7")

段优化策略包括定期监控段大小、手动触发合并操作以及根据数据特性设置合适的段容量阈值。

# 监控段信息
collection.get_segment_info()# 手动触发段合并
collection.compact()# 根据向量维度调整段大小
if 向量维度 > 1024:maxSize = 512  # 降低段大小以缓解内存压力
else:maxSize = 1024

性能优化建议

分片数量对性能的影响

分片配置单分片数据量写入吞吐量潜在问题
分片数少容易成为性能瓶颈
分片数多资源消耗较大

存储配置优化

根据实际业务需求调整存储参数:

# 设置段容量阈值(单位:MB)
storage.segmentSize = 1024

通过合理配置这些参数,可以在存储效率和查询性能之间找到最佳平衡点,确保Milvus系统在大规模数据处理场景下的稳定运行。

总结

Milvus的分区-分片-段三层架构设计充分体现了现代分布式数据库的设计理念。分区实现业务层面的数据隔离,分片提供水平扩展能力,段则专注于存储优化。正确理解和配置这三个层次的参数,是构建高性能向量数据库应用的关键基础。

概述

Milvus作为专业的向量数据库,采用了分区(Partition)、分片(Shard)、段(Segment)三层架构来实现高效的数据组织和查询优化。本文将通过具体的比喻和实践案例,深入解析这三种数据组织方式的工作原理和最佳实践。

核心概念解析

图书馆管理系统类比

为了更好地理解分区、分片、段三者之间的关系,我们可以将其类比为管理一个超大型图书馆(对应Milvus中的Collection集合),该图书馆存放着上亿本书籍。

分区(Partition):主题区域划分

分区相当于按书籍主题划分的不同楼层区域。例如:1楼科技区、2楼文学区、3楼艺术区。

分区的核心作用是实现业务层面的数据隔离,使系统能够快速定位特定类别的数据,避免全库扫描。这类似于电商平台按商品类别(电器、服装、食品)进行分区存储的策略。

分片(Shard):并行处理单元

分片相当于每个主题区内设置的多个平行书架。以科技区为例,可以分成10个结构相同的书架,每个书架存储100万本书。

分片的主要目的是实现负载均衡和水平扩展。当多个用户同时查找时,不同书架可以并行工作,显著提高系统的并发处理能力。

段(Segment):存储优化单元

段相当于每个书架上的可拆卸书盒。每个书架由多个书盒组成,新书先放入临时书盒,写满后密封成固定书盒。

段的设计目的是优化存储空间和查询性能。旧书盒可以进行压缩归档,类似于数据库将数据分块存储以便于后台合并优化。

三层架构对比分析

在这里插入图片描述

维度分区(Partition)分片(Shard)段(Segment)
层级定位逻辑划分物理分布物理存储单元
可见性用户主动创建管理系统自动分配完全由系统管理
主要目的业务数据隔离负载均衡与扩展存储优化与查询加速
操作方式手动指定查询分区自动路由请求到不同节点自动合并/压缩

实际工作流程示例

数据写入场景分析

以电商平台上传10万条商品数据为例,展示三层架构的协作过程。

分区阶段:系统首先按业务维度进行数据划分,例如按商品类别创建不同分区。

# 按商品类别创建分区
collection.create_partition("electronics")
collection.create_partition("clothing")

分片阶段:系统自动将数据均匀分配到集群的各个节点。假设集群包含3个节点,数据将自动分配到3个分片中。

在这里插入图片描述

段阶段:分片内的数据按照预设大小(通常为512MB)自动切割成多个段进行存储。

在这里插入图片描述

数据查询流程

查询过程遵循以下步骤:用户发起查询请求 → 系统定位相关分区 → 并行查询所有相关分片 → 各分片扫描对应的段 → 合并结果并排序返回。

数据合并优化

系统会自动执行段合并操作,将多个小段合并成大段以提高查询效率。这个过程类似于HBase的Compaction机制:

[Segment1(100MB)] + [Segment2(100MB)] → [SegmentMerged(200MB)]

开发最佳实践

分区设计策略

推荐的分区方案包括按时间维度分区(如2023Q1、2023Q2)和按业务线分区(如user_profiles、product_info)。

需要避免的错误做法是创建过多分区,如超过1000个分区会严重影响元数据性能。

# 良好实践:按时间分区
client.create_partition(collection_name="logs",partition_name="2024-01"
)# 错误做法:为每个用户创建单独分区(容易超过系统限制)

分片数量配置

分片数量的配置需要基于硬件资源进行合理计算。推荐使用公式:分片数 = 节点数 × CPU核心数。

错误的配置如在8核机器上设置128个分片会导致线程频繁切换,严重影响性能。正确的做法是根据实际硬件配置进行设置:

collection = Collection(name="product_images",shards_num=64,  # 8台机器 × 8核 = 64个分片partitions=["electronics","clothing", "home_appliances"]
)

段配置优化

段的配置可以通过调整系统参数来优化:

# 调整段的最大大小为1GB
client.set_property("dataCoord.segment.maxSize", "1024")
# 设置段密封比例为70%
client.set_property("dataCoord.segment.sealProportion", "0.7")

段优化策略包括定期监控段大小、手动触发合并操作以及根据数据特性设置合适的段容量阈值。

# 监控段信息
collection.get_segment_info()# 手动触发段合并
collection.compact()# 根据向量维度调整段大小
if 向量维度 > 1024:maxSize = 512  # 降低段大小以缓解内存压力
else:maxSize = 1024

性能优化建议

分片数量对性能的影响

分片配置单分片数据量写入吞吐量潜在问题
分片数少容易成为性能瓶颈
分片数多资源消耗较大

存储配置优化

根据实际业务需求调整存储参数:

# 设置段容量阈值(单位:MB)
storage.segmentSize = 1024

通过合理配置这些参数,可以在存储效率和查询性能之间找到最佳平衡点,确保Milvus系统在大规模数据处理场景下的稳定运行。

总结

Milvus的分区-分片-段三层架构设计充分体现了现代分布式数据库的设计理念。分区实现业务层面的数据隔离,分片提供水平扩展能力,段则专注于存储优化。正确理解和配置这三个层次的参数,是构建高性能向量数据库应用的关键基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/pingmian/82533.shtml
繁体地址,请注明出处:http://hk.pswp.cn/pingmian/82533.shtml
英文地址,请注明出处:http://en.pswp.cn/pingmian/82533.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kettle 远程mysql 表导入到 hadoop hive

kettle 远程mysql 表导入到 hadoop hive (教学用 ) 文章目录 kettle 远程mysql 表导入到 hadoop hive创建 对象 执行 SQL 语句 -mysql 导出 CSV格式CSV 文件远程上传到 HDFS运行 SSH 命令远程登录 run SSH 并执行 hadoop fs -put 建表和加载数据总结 创…

Linux输出命令——echo解析

摘要 全面解析Linux echo命令核心功能,涵盖文本输出、变量解析、格式控制及高级技巧,助力提升Shell脚本开发与终端操作效率。 一、核心功能与定位 作为Shell脚本开发的基础工具,echo命令承担着信息输出与数据传递的重要角色。其主要功能包…

Windows系统下 NVM 安装 Node.js 及版本切换实战指南

以下是 Windows 11 系统下使用 NVM 安装 Node.js 并实现版本自由切换的详细步骤: 一、安装 NVM(Node Version Manager) 1. 卸载已有 Node.js 如果已安装 Node.js,请先卸载: 控制面板 ➔ 程序与功能 ➔ 找到 Node.js…

【leetcode】977. 有序数组的平方

有序数组的平方 题目代码1. 使用sorted2. 双指针 题目 977. 有序数组的平方 给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。 示例 1: 输入:nums [-4,-1,0,3,10] 输…

Obsidian 数据可视化深度实践:用 DataviewJS 与 Charts 插件构建智能日报系统

Obsidian 数据可视化深度实践:用 DataviewJS 与 Charts 插件构建智能日报系统 一、核心架构解析 本系统基于 Obsidian 的 DataviewJS 和 Charts 插件,实现日报数据的自动采集、可视化分析及智能回溯功能(系统架构原理见)。其技术…

深入解析Spring Boot与Kafka集成:构建高效消息驱动应用

深入解析Spring Boot与Kafka集成:构建高效消息驱动应用 引言 在现代分布式系统中,消息队列是实现异步通信和解耦的关键技术之一。Apache Kafka作为一款高性能、分布式的消息队列系统,广泛应用于大数据和实时数据处理场景。本文将详细介绍如…

Rust 学习笔记:关于生命周期的练习题

Rust 学习笔记:关于生命周期的练习题 Rust 学习笔记:关于生命周期的练习题生命周期旨在防止哪种编程错误?以下代码能否通过编译?若能,输出是?如果一个引用的生命周期是 static,这意味着什么&…

word解决不同文档同样的字体段落设置下看起来行距不同的问题

问题: 有时候我们照着模板修改文档格式,明明字体和段落设置一模一样,但是看起来行距不一样。 解决办法: 一般照着模板修改文档内容,要注意以下几点,如果以下几点与模板设置相同时就可解决上述问题 1、纸…

Jenkins实践(9):配置“构建历史的显示名称,加上包名等信息“

Jenkins实践(9):配置“构建历史的显示名称,加上包名等信息“ 版本:Jenkins 4.262.2 需求:想要在构建历史中展示,本次运行的是哪个版本或哪个包 操作步骤: 1、先安装插件Build Name and Description Setter 2、Set Build Name 3、构建历史处查看展示 插件特性说明 安装依赖…

matIo库及.mat数据格式介绍

一.概述 1..mat数据格式 (1).mat 是 MATLAB 软件的标准二进制数据存储格式,用于保存变量、矩阵、数组、结构体等数据类型。其名称源于 “MATLAB Data” 的缩写,最初设计为高效存储和加载 MATLAB 环境中的数据,后来逐…

企业级调度器LVS (面试版)

1. 什么是 LVS?有什么作⽤? LVS ( Linux Virtual Server )是⼀个基于 Linux 内核实现的⾼性能、可扩展和可靠的负载均衡。它将多个服务器组成⼀个⾼可⽤、⾼性能和⾼可靠的虚拟服务器集群,通过将客户端的请求转发到不同的后端服务器,实现负载均衡和⾼可⽤性。 2.什么是 …

用python制作一个简易的聊天室软件

文章目录 效果图python源码使用说明效果图 只需要一百多行的python代码,就能制作一个简易的聊天室软件。效果如下: 操作说明: 1、先运行server.py启动服务器; 2、每运行一次client.py可以创建一个聊天用户(需要输入用户昵称); 3、输入对方的昵称即可与其聊天,输入“a…

Android13 开机时间优化

前言 在实际应用场景中,特定领域对 Android 系统的启动时间有着极为严苛的要求,车载领域便是典型代表。想象一下,当车辆已经行驶出数公里之遥,车内的信息娱乐系统(IVI)却仍未完成启动,这无疑会…

08SpringBoot高级--自动化配置

目录 Spring Boot Starter 依赖管理解释 一、核心概念 二、工作原理 依赖传递: 自动配置: 版本管理: 三、核心流程 四、常用 Starter 示例 五、自定义 Starter 步骤 创建配置类: 配置属性: 注册自动配置&a…

基于cornerstone3D的dicom影像浏览器 第二十四章 显示方位、坐标系、vr轮廓线

系列文章目录 文章目录 系列文章目录前言一、工具栏修改二、切片窗口显示方位文字1. 修改mprvr.js,添加函数getOrientationMarkers2. 修改DisplayerArea3D.vue 三、vr窗口显示坐标系1. 修改mprvr.js 添加OrientationMarkerTool2. view3d.vue中响应工具栏事件3. 修改…

【C/C++】线程局部存储:原理与应用详解

文章目录 1 基础概念1.1 定义1.2 初始化规则1.3 全局TLS vs 局部静态TLS 2 内存布局2.1 实现机制2.2 典型内存结构2.3 性能特点 3 使用场景/用途3.1 场景3.2 用途 4 注意事项5 对比其他技术6 示例代码7 建议7.1 调试7.2 优化 8 学习资料9 总结 在 C 多线程编程中,线…

【图像大模型】IP-Adapter:图像提示适配器的技术解析与实践指南

IP-Adapter:图像提示适配器的技术解析与实践指南 一、项目背景与技术价值1.1 图像生成中的个性化控制需求1.2 IP-Adapter的核心贡献 二、技术原理深度解析2.1 整体架构设计2.2 图像特征编码器2.3 训练策略 三、项目部署与实战指南3.1 环境配置3.2 模型下载3.3 基础生…

MySQL-5.7 修改密码和连接访问权限

一、MySQL-5.7 修改密码和连接权限设置 修改密码语法 注意:rootlocalhost 和 root192.168.56.% 是两个不同的用户。在修改密码时,两个用户的密码是各自分别保存,如果两个用户密码设置不一样则登陆时注意登陆密码 GRANT ALL PRIVILEGES ON …

Linux基本指令篇 —— touch指令

touch是Linux和Unix系统中一个非常基础但实用的命令,主要用于操作文件的时间戳和创建空文件。下面我将详细介绍这个命令的用法和功能。 目录 一、基本功能 1. 创建空文件 2. 同时创建多个文件 3. 创建带有空格的文件名(需要使用引号) 二、…

mysql explain使用

文章目录 type 访问类型性能高到低多注意type: index 出现的场景 key 实际使用的索引Extra 额外信息其他字段 通过 EXPLAIN 你可以知道:如是否使用索引、扫描多少行、是否需要排序或临时表 EXPLAIN 三板斧(type、key、Extra) 例子&#xff1…