前情概要
针对高考中构造数列的常见变形做一总结,便于梳理思路,提升思维。
类型Ⅰ:
形如 a n + 1 = p ⋅ a n + q a_{n+1}=p\cdot a_n+q an+1=p⋅an+q, p , q p,q p,q为常数,即 a n + 1 = f ( a n ) a_{n+1}=f(a_n) an+1=f(an),构造变形方向:
其一: a n + 1 + k = p ( a n + k ) a_{n+1}+k=p(a_n+k) an+1+k=p(an+k),构造 { a n + k } \{a_n+k\} {an+k}为等比数列, k = q p − 1 k=\frac{q}{p-1} k=p−1q;
其二:先得到 a n = p ⋅ a n − 1 + q a_n=p\cdot a_{n-1}+q an=p⋅an−1+q,两式做差,得到
a n + 1 − a n = p ( a n − a n − 1 ) a_{n+1}-a_n=p(a_n-a_{n-1}) an+1−an=p(an−an−1),构造 { a n − a n − 1 } \{a_n-a_{n-1}\} {an−an−1}为等比数列;
类型Ⅱ:
形如 a n + 1 = 2 ⋅ a n + 3 n + 2 a_{n+1}=2\cdot a_n+3n+2 an+1=2⋅an+3n+2,即 a n + 1 = f ( n , a n ) a_{n+1}=f(n,a_n) an+1=f(n,an),构造变形方向:
假设 a n + 1 + A ( n + 1 ) + B = 2 ( a n + A n + B ) a_{n+1}+A(n+1)+B=2(a_n+An+B) an+1+A(n+1)+B=2(an+An+B),解得 A = 3 A=3 A=3, B = 5 B=5 B=5,
即 a n + 1 + 3 ( n + 1 ) + 5 = 2 ( a n + 3 n + 5 ) a_{n+1}+3(n+1)+5=2(a_n+3n+5) an+1+3(n+1)+5=2(an+3n+5),构造 { a n + 3 n + 5 } \{a_n+3n+5\} {an+3n+5}为等比数列;
类型Ⅲ:
形如 a n + 1 = 2 ⋅ a n + 3 n 2 + 4 n + 2 a_{n+1}=2\cdot a_n+3n^2+4n+2 an+1=2⋅an+3n2+4n+2,即 a n + 1 = f ( n , a n ) a_{n+1}=f(n,a_n) an+1=f(n,an),(高三仅仅了解)构造变形方向:
假设 a n + 1 + A ( n + 1 ) 2 + B ( n + 1 ) + C = 2 ( a n + A n 2 + B n + C ) a_{n+1}+A(n+1)^2+B(n+1)+C=2(a_n+An^2+Bn+C) an+1+A(n+1)2+B(n&#