检索排序 & 分页
- 1.测试数据准备
- 2.排序功能
- 2.1 简单字段排序
- 2.2 多字段排序
- 2.3 日期排序
- 3.分页功能
- 3.1 基础分页
- 3.2 深度分页(不推荐大数据量使用)
- 3.3 使用 search_after 进行高效分页
- 4.综合示例:高亮+排序+分页
- 5.实践建议
1.测试数据准备
首先,我们创建一个名为 blog_posts
的索引,并插入一些测试数据:
PUT /blog_posts
{"mappings": {"properties": {"title": { "type": "text" },"content": { "type": "text" },"author": { "type": "keyword" },"views": { "type": "integer" },"publish_date": { "type": "date" },"tags": { "type": "keyword" }}}
}
POST /blog_posts/_bulk
{"index":{}}
{"title":"Elasticsearch Basics","content":"Learn the basics of Elasticsearch and how to perform simple queries.","author":"John Doe","views":1500,"publish_date":"2023-01-15","tags":["search","database"]}
{"index":{}}
{"title":"Advanced Search Techniques","content":"Explore advanced search techniques in Elasticsearch including aggregations and filters.","author":"Jane Smith","views":3200,"publish_date":"2023-02-20","tags":["search","advanced"]}
{"index":{}}
{"title":"Data Analytics with ELK","content":"How to use the ELK stack for data analytics and visualization.","author":"John Doe","views":2800,"publish_date":"2023-03-10","tags":["analytics","elk"]}
{"index":{}}
{"title":"Elasticsearch Performance Tuning","content":"Tips and tricks for optimizing Elasticsearch performance in production environments.","author":"Mike Johnson","views":4200,"publish_date":"2023-04-05","tags":["performance","optimization"]}
{"index":{}}
{"title":"Kibana Dashboard Guide","content":"Creating effective dashboards in Kibana for monitoring and analysis.","author":"Jane Smith","views":1900,"publish_date":"2023-05-12","tags":["kibana","visualization"]}
2.排序功能
能排序的字段都具备正排索引,单 text
类型字段是不可以排序的。如果要使 text
字段支持排序、聚合,则需要开启 fielddata
。
sort
是和 query
平级的,并不会被 query
包含。
2.1 简单字段排序
GET /blog_posts/_search
{"query": {"match_all": {}},"sort": [{"views": {"order": "desc"}}]
}
2.2 多字段排序
GET /blog_posts/_search
{"query": {"match_all": {}},"sort": [{"author": {"order": "asc"}},{"views": {"order": "desc"}}]
}
2.3 日期排序
GET /blog_posts/_search
{"query": {"match_all": {}},"sort": [{"publish_date": {"order": "desc"}}]
}
3.分页功能
Elasticsearch 支持对查询结果进行分页处理,允许用户逐步获取和浏览大量数据。
在编写查询语句时,可通过再请求体中添加 from
和 size
字段实现分页。from
表示结果集的起始位置,而 size
表示每页返回的文档数量。
如果将 from
设置为 11 11 11,size
设置为 5 5 5,则返回的是第 10 10 10 ~ 14 14 14 条数据(默认从第 0 0 0 条开始)。
3.1 基础分页
GET /blog_posts/_search
{"query": {"match_all": {}},"from": 0,"size": 2,"sort": [{"publish_date": {"order": "desc"}}]
}
3.2 深度分页(不推荐大数据量使用)
深度分页 指的是在 Elasticsearch 中查询结果集 非常靠后的页码(例如第 1000 1000 1000 页,每页 10 10 10 条数据,即 from=10000
)。它通常表现为使用 from + size
参数组合来获取远端的分页数据。
❌ 不推荐的详细原因可参考我的另一篇博客:《【Elasticsearch】深度分页及其替代方案》。
当然,我们这里测试的数据没有那么多。
GET /blog_posts/_search
{"query": {"match_all": {}},"from": 3,"size": 2
}
3.3 使用 search_after 进行高效分页
首先获取第一页:
GET /blog_posts/_search
{"query": {"match_all": {}},"size": 2,"sort": [{"views": {"order": "desc"}},{"_id": {"order": "asc"}}]
}
然后使用最后一个结果的排序值获取下一页:
GET /blog_posts/_search
{"query": {"match_all": {}},"size": 2,"search_after": [3200, "上一页最后一个文档的ID"],"sort": [{"views": {"order": "desc"}},{"_id": {"order": "asc"}}]
}
4.综合示例:高亮+排序+分页
GET /blog_posts/_search
{"query": {"multi_match": {"query": "search","fields": ["title", "content"]}},"highlight": {"fields": {"title": {},"content": {"fragment_size": 100,"number_of_fragments": 2}}},"sort": [{"views": {"order": "desc"}}],"from": 0,"size": 3
}
5.实践建议
功能 | |
---|---|
高亮 |
|
排序 |
|
分页 |
|