一、内存映射

内存映射,简而言之就是将用户空间的一段内存区域映射到内核空间,映射成功后,用户对这段内存区域的修改可以直接反映到内核空间,同样,内核空间对这段区域的修改也直接反映用户空间。那么对于内核空间和用户空间两者之间需要大量数据传输等操作的话效率是非常高的。
以下是一个把普遍文件映射到用户空间的内存区域的示意图:
示意图


二、mmap函数

1.基本介绍

mmap是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系。
实现这样的映射关系后,进程就可以采用指针的方式读写操作这一段内存,而系统会自动回写脏页面到对应的文件磁盘上,即完成了对文件的操作而不必再调用read,write等系统调用函数。相反,内核空间对这段区域的修改也直接反映用户空间,从而可以实现不同进程间的文件共享。如下图所示:
示意图

2.mmap的优势

通过系统调用mmap ,程序可以高效地访问文件数据,而无需通过传统的readwrite系统调用进行数据的复制,具体来说为:

  • 传统的readwrite分为两步(下面以write为例)
    • 第一步:用户态空间缓冲区 → 内核页缓冲区(其实就是内核文件缓冲区)
    • 第二步:内核页缓冲区 → 磁盘
  • 使用mmap
    • 映射阶段:内核将文件映射到进程的虚拟地址空间,但物理内存尚未分配(这是延迟申请,当真正访问阶段需要的时候才缺页中断分配)
    • 修改数据:进程直接修改映射的内存(相当于直接修改内核的页缓存),无需调用 write,也无用户态到内核态的数据拷贝

注意:当内核页缓存修改好了,我们就认为改好了,我们不关心内核缓冲区到磁盘的刷新这一过程(复杂)


三、mmap接口介绍

当我们建立好映射以后,就可以直接对“开辟”的空间进行操作(虚拟地址)
我们对虚拟地址的操作,都是直接修改映射的内存。

1. mmap建立映射

头文件<sys/mman.h>
函数原型

void *mmap(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

参数说明

  • addr:建议的映射起始地址(通常设为NULL,由内核自动选择)
  • length:映射区域的长度(必须是页大小(4 KB)的整数倍,如4096字节)
  • prot:映射区的内存保护模式选项(用|链接)
    • PROT_READ:映射区可读
    • PROT_WRITE:映射区可写
    • PROT_EXEC:映射区可执行
    • 注意:映射权限必须<=文件打开权限
  • flags:映射类型(如MAP_SHARED MAP_PRIVATE
    • MAP_PRIVATE:创建⼀个私有映射。对映射区域的修改不会反映到底层文件中。(即:修改仅对当前进程有效(写时复制,类似 fork
    • MAP_SHARED:创建⼀个共享映射。对映射区域的修改会反映到底层文件中(即:修改会同步到文件,其他进程可见)
    • MAP_ANONYMOUS:指定要创建⼀个匿名内存映射
  • fd:文件描述符(匿名映射时设为 -1)
  • offset:文件偏移量(开始映射的位置相较于0位置处的偏移)(必须是页大小的整数倍)

返回值

  • 成功:返回映射区的起始地址(虚拟地址)
  • 失败:返回(void*) -1 或者 MAP_FAILED(等效的)

注意

  • 映射的要是一个已经打开的文件!
  • 文件大小为0的文件无法映射,需要先调整文件大小
    • ftruncate(fd, SIZE)(会把文件的内容全部初始化成\0
  • 映射的长度如果 > 文件的大小,则可能导致未定义行为
  • 因为mmap需要读取文件元数据(如大小):所以,即使你只需要写入权限,也需要在open文件的时候赋予读权限

2.munmap取消映射

函数原型

int munmap(void *addr, size_t length);

参数介绍

  • addr:映射空间的起始地址
  • length:空间长度(大小)

返回值

  • 成功:0
  • 错误:-1(错误码会被设置)

四、mmap的用法

1.写入映射

#include<iostream>
#include<cstdio>
#include<sys/mman.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>
#include<unistd.h>#define FILENAME "log.txt"
#define SIZE 1024int main()
{//open fileint fd = open(FILENAME, O_RDWR|O_APPEND|O_CREAT, 0666);if (fd < 0){perror("open");return 1;}// 调整file sizeftruncate(fd, SIZE);//建立映射/*void *mmap(void *addr, size_t length, int prot, int flags,int fd, off_t offset);*/char* mmap_addr = (char*)mmap(nullptr, SIZE, PROT_WRITE, MAP_SHARED, fd, 0);if (mmap_addr == MAP_FAILED){perror("mmap");return 2;}//写入操作for (int c = 'a', i = 0; c <= 'z'; c++, i++){mmap_addr[i] = c;}//取消映射munmap(mmap_addr, SIZE);//关闭文件close(fd);std::cout << "写入映射完毕" << std::endl;return 0;
}

2.读取映射

#include<iostream>
#include<cstdio>
#include<sys/mman.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>
#include<unistd.h>#define FILENAME "log.txt"int main()
{//open fileint fd = open(FILENAME, O_RDONLY);if (fd < 0){perror("open");return 1;}struct stat st; // struct stat 类型的结构体用于记录文件的属性fstat(fd, &st);//建立映射char* mmap_addr = (char*)mmap(nullptr, st.st_size, PROT_READ, MAP_SHARED, fd, 0);if (mmap_addr == MAP_FAILED){perror("mmap");return 2;}//读取操作std::cout << mmap_addr << std::endl;//取消映射munmap(mmap_addr, st.st_size);//关闭文件close(fd);std::cout << "读取映射完毕" << std::endl;return 0;
}

3.简单模拟实现malloc

在malloc里,对应大块的内存通常是使用mmap来分配的,而对应小块的内存,是用brk来分配的。

这里要再介绍一个flags选项:MAP_ANONYMOUS

  • MAP_ANONYMOUS:指定要创建⼀个匿名内存映射
  • 当使使用MAP_ANONYMOUS 标志时,mmap会分配⼀段不与任何⽂件相关联的内存区域(即这段内存没有⽂件作为其后端存储)。
  • 这种类型的映射通常用于需要分配私有内存的场景,例如进程内部的内存分配

下面用mmap简单模拟实现一下malloc

#include<iostream>
#include<cstdio>
#include<sys/mman.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>
#include<unistd.h>#define SIZE 1024void* MyMalloc(int size)
{//建立映射(匿名映射)--- 可读可写void* mmap_addr = mmap(nullptr, size, PROT_WRITE|PROT_READ, MAP_SHARED|MAP_ANONYMOUS, -1, 0);if (mmap_addr == MAP_FAILED){perror("mmap");exit(EXIT_FAILURE);}return mmap_addr;
}void* MyFree(void* mmap_addr, int size)
{if(munmap(mmap_addr, size) == -1){perror("munmap");exit(EXIT_FAILURE);}
}int main()
{char* ptr = (char*)MyMalloc(SIZE);//写入for (int c = 'a', i = 0; c <= 'z'; c++, i++){ptr[i] = c;}//读取std::cout << "写入后的addr content: " << ptr << std::endl;MyFree(ptr, SIZE);return 0;
}

4.makefile

.PHONY:all
all:write read malloc
write:mmap_write.ccg++ -o $@ $^ -std=c++11
read:mmap_read.ccg++ -o $@ $^ -std=c++11
malloc:mmap_malloc.ccg++ -o $@ $^ -std=c++11.PHONY:clean
clean:rm -f write read malloc

5.最终结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/diannao/88792.shtml
繁体地址,请注明出处:http://hk.pswp.cn/diannao/88792.shtml
英文地址,请注明出处:http://en.pswp.cn/diannao/88792.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通信无BUG,ethernet ip转profinet网关,汽车焊接设备通信有心机

在运用“激光钎焊”对汽车车顶、侧面板、后行李箱盖等位置进行接合时&#xff0c;必须配备能够沿着复杂车身线条&#xff0c;对细窄焊接线实施高精度快速检测及模仿控制的“焊缝跟踪控制”。 那么汽车生产线的系统升级改造迫在眉睫&#xff0c;当西门子PLC和库卡机器人无法通信…

python脚本ETH获取最新发行版本并将是否更新信息发送到钉钉

import requests import json import time import hmac import hashlib import base64 import urllib.parse# 1. 配置钉钉机器人 webhook "https://oapi.dingtalk.com/robot/send?access_tokenXXX" secret "XXX" # 如果没有加签验证&#xff0c;请设…

【Docker基础】Docker容器管理:docker ps及其参数详解

目录 1 docker ps命令概述 1.1 命令定位与作用 1.2 命令基本语法 2 基础参数详解 2.1 默认输出解析 2.2 核心参数解析 2.2.1 -a, --all 2.2.2 -q, --quiet 2.2.3 --no-trunc 3 高级过滤与格式化 3.1 过滤器(--filter)详解 3.1.1 常用过滤条件 3.1.2 实际应用示例 …

应急响应-感染Neshta病毒

病毒确定&#xff1a; 根据感染现象确定为Virus/Win32.Neshta家族病毒 病毒表现&#xff1a; 该病毒为感染式病毒。该病毒会在系统%SystemRoot%目录下释放svchost.com文件&#xff0c;并通过添加注册表的方式确保每个exe文件执行的时候都会先执行这个文件。该病毒还会收集系统信…

Hyperledger Fabric 入门笔记(二十)Fabric V2.5 测试网络进阶之Tape性能测试

文章目录 前言一、介绍二、架构三、安装说明四、使用方法4.1. 修改配置文件4.2. 启动测试网络4.3. 运行测试 前言 本文介绍由Hyperledger中国技术工作组提供的另一款区块链网络性能测试工具Tape的架构、安装和在Fabric测试网络中的使用。 一、介绍 Tape是一款轻量级的、可以快…

怎样在 VS Code 中快速创建 Vue 单文件组件(SFC)的基础模板结构?

问题 在Vue项目的开发中&#xff0c;我们经常遇到一个问题&#xff0c;创建新组件时要自己输入基本的框架&#xff0c;比如&#xff1a; <template><div class"page-box"></div> </template><script> export default {name: ,data()…

高防IP在服务器中的作用都有哪些?

高防IP作为一种通过技术手段让用户网络服务更加安全的一种IP地址&#xff0c;有着更高的防御能力&#xff0c;有着强大的流量清洗中心和防御系统&#xff0c;帮助企业实时监控网络流量&#xff0c;将恶意的用户请求识别并过滤掉&#xff0c;保护目标服务器不会受到网络攻击&…

实战 X-AnyLabeling:构建高效自动标注系统的工程实践

文章目录 一、项目背景与目标二、系统架构与模块划分2.1 模块组成说明2.2 架构图 三、模型封装与平台对接3.1 模型封装接口3.2 接入 X-AnyLabeling 平台 四、可视化与预测验证4.1 UI 预测标签预览 五、性能优化与工程经验5.1 模型加速与推理优化5.2 经验总结5.3 实际效果 本文将…

UC3842/UC3843反激教程教学开关电源 反激设计步骤,每一关键元器件计算

资料下载地址&#xff1a;UC3842/UC3843反激教程教学开关电源 反激设计步骤&#xff0c;每一关键元器件计算 1、原理图 2、PCB图 3、变压器设计资料 4、开关电源设计资料 5、主要元器件说明书 6、系统整体资料 7、说明文档 7.1、电源设计概述 电源规格&#xff1a;设计一款 2…

Docker 入门教程(二):Docker 的基本原理

文章目录 &#x1f433; Docker 入门教程&#xff08;二&#xff09;&#xff1a;Docker 的基本原理1. Docker 架构总览&#xff1a;三大核心角色2. 镜像与容器的关系3. 容器启动流程&#xff1a;docker run 背后发生了什么&#xff1f; &#x1f433; Docker 入门教程&#xf…

21.安卓逆向2-frida hook技术-HookOkHttp的拦截器

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a;图灵Python学院 工具下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1bb8NhJc9eTuLzQr39lF55Q?pwdzy89 提取码&#xff1…

小程序入门:swpier 和 swpier-item 的基本使用

在前端开发中&#xff0c;创建交互式的用户界面组件是至关重要的。今天&#xff0c;我们将深入探讨 swpier 和 swpier-item 的基本使用方法&#xff0c;这两个组件在构建轮播图等滑动效果的场景中非常实用。 一、swpier 组件概述 swpier 组件是实现滑动效果的核心容器。它负责…

SQL学习笔记4

约束 1、约束 约束&#xff0c;是指作用在表中字段上的规则&#xff0c;用于限制字段输入的数据&#xff0c;使得表格式统一&#xff0c;数据内容正确。同一个字段的约束可以有多个 约束包括&#xff1a; 非空约束&#xff0c;限制表中的值不为null:not null 唯一约束&…

力扣刷题(第七十天)

灵感来源 - 保持更新&#xff0c;努力学习 - python脚本学习 比特位计数 解题思路 对于任意整数 x&#xff0c;其 1 的个数等于 x // 2 的 1 的个数加上 x % 2。状态转移方程&#xff1a;dp[x] dp[x // 2] (x % 2)。 class Solution:def countBits(self, n: int) ->…

鸿蒙网络编程系列56-仓颉版通过数据包结束标志解决TCP粘包问题

1. TCP粘包问题解决思路 在本系列的上一篇文章演示了TCP数据粘包的原因以及可能的解决方法&#xff0c;本文将通过其中的添加数据包结束标志的方法来解决这个问题。我们知道&#xff0c;数据粘包的原因是因为发送的时候没有标明数据包的边界&#xff0c;那么&#xff0c;我们人…

Redis网络通信模块深度解析:单线程Reactor到多线程IO的架构演进

一、核心架构&#xff1a;单线程Reactor模型 Redis网络模块采用经典Reactor模式&#xff0c;核心流程如下&#xff1a; void aeMain(aeEventLoop *eventLoop) {while (!eventLoop->stop) {// 前置钩子&#xff08;集群心跳/数据持久化&#xff09;if (eventLoop->befor…

PILCO: 基于模型的高效策略搜索方法原理解析

PILCO: 基于模型的高效策略搜索方法原理解析 PILCO (Probabilistic Inference for Learning Control) 是一种基于模型的强化学习算法&#xff0c;由Marc Deisenroth和Carl Rasmussen于2011年提出。该算法在数据效率方面表现出色&#xff0c;能够以极少的样本数据实现有效学习。…

大语言模型训练中的自监督学习和其他训练方式

大语言模型训练中的自监督学习和其他训练方式。 自监督学习&#xff08;Self-Supervised Learning&#xff09; 1. 什么是自监督学习&#xff1f; 自监督学习是一种不需要人工标注数据的训练方式&#xff0c;模型从数据本身学习特征和模式。 在语言模型中的具体实现&#x…

[mcp-servers] 工具与资源 | 模型上下文协议MCP | 锚点分类

第三章&#xff1a;工具与资源 欢迎回来&#xff01; 在之前的旅程中&#xff0c;我们认识了客户端&#xff08;第一章&#xff1a;客户端&#xff09;——AI的信使组件 以及MCP服务器&#xff08;第二章&#xff1a;MCP服务器&#xff09;——接收请求并具备执行能力的智能助…

2025年06月27日Github流行趋势

项目名称&#xff1a;edit 项目地址 url&#xff1a;https://github.com/microsoft/edit项目语言&#xff1a;Rust历史 star 数&#xff1a;10807今日 star 数&#xff1a;411项目维护者&#xff1a;lhecker, DHowett, b6k-dev, rhysd, MingcongBai项目简介&#xff1a;我们都编…