遥感图像数字水印系统优化方案

1. 引言

遥感图像在现代地理信息系统、环境监测、军事侦察等领域发挥着重要作用。为了保护遥感图像的版权和完整性,数字水印技术被广泛应用。然而,现有的遥感图像水印方案往往在不可见性、鲁棒性和容量之间存在权衡,难以同时满足所有要求。

本文针对现有遥感图像水印代码效果不佳的问题,提出了一套全面的优化方案。我们将从算法选择、预处理技术、嵌入策略、提取方法和性能评估等多个方面进行深入分析和优化,旨在提升水印系统的整体性能。

2. 现有问题分析

在优化之前,我们需要全面分析现有代码可能存在的问题:

  1. 不可见性差:水印嵌入后导致图像质量明显下降
  2. 鲁棒性不足:水印难以抵抗常见图像处理攻击
  3. 容量限制:嵌入的水印信息量有限
  4. 计算效率低:嵌入和提取过程耗时过长
  5. 适应性差:对不同类型遥感图像表现不一致

3. 优化方案设计

3.1 算法选择与改进

3.1.1 离散小波变换(DWT)与奇异值分解(SVD)结合

传统LSB(最低有效位)方法虽然简单,但鲁棒性较差。我们采用DWT+SVD组合算法,在频域中嵌入水印,提高鲁棒性。

import numpy as np
import pywt
import cv2
from scipy.linalg import svd
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim
import matplotlib.pyplot as pltclass EnhancedWatermark:def __init__(self, wavelet='haar', level=2, alpha=0.1):self.wavelet = waveletself.level = levelself.alpha = alpha  # 水印强度因子def dwt2(self, image):"""二维离散小波变换"""coeffs = pywt.wavedec2(image, self.wavelet, level=self.level)return coeffsdef idwt2(self, coeffs):"""二维离散小波逆变换"""return pywt.waverec2(coeffs, self.wavelet)def svd_embed(self, host_block, watermark_block):"""使用SVD在主机图像块中嵌入水印"""U, S, Vh = svd(host_block, full_matrices=False)# 修改奇异值嵌入水印S_modified = S + self.alpha * watermark_block# 重构图像块host_modified = np.dot(U, np.dot(np.diag(S_modified), Vh))return host_modified, U, S, Vhdef svd_extract(self, host_modified, U, S, Vh):"""从修改后的图像块中提取水印"""U_mod, S_mod, Vh_mod = svd(host_modified, full_matrices=False)watermark_extracted = (S_mod - S) / self.alphareturn watermark_extracted
3.1.2 自适应水印强度调整

根据图像局部特征自适应调整水印强度,在纹理复杂区域使用较强水印,在平滑区域使用较弱水印。

def calculate_texture_map(image, block_size=8):"""计算图像纹理图,用于自适应水印强度"""height, width = image.shapetexture_map = np.zeros_like(image, dtype=np.float32)for i in range(0, height, block_size):for j in range(0, width, block_size):block = image[i:i+block_size, j:j+block_size]if block.size > 0:# 使用标准差作为纹理复杂度的度量texture = np.std(block)texture_map[i:i+block_size, j:j+block_size] = texture# 归一化纹理图texture_map = (texture_map - texture_map.min()) / (texture_map.max() - texture_map.min() + 1e-10)return texture_mapdef adaptive_alpha(texture_map, base_alpha=0.05, max_alpha=0.2):"""根据纹理图计算自适应水印强度"""return base_alpha + (max_alpha - base_alpha) * texture_map

3.2 预处理优化

3.2.1 图像预处理
def preprocess_image(image, target_size=None, normalize=True):"""图像预处理函数:param image: 输入图像:param target_size: 目标尺寸 (width, height):param normalize: 是否归一化到[0,1]:return: 预处理后的图像"""# 转换为灰度图像(如果原是彩色)if len(image.shape) == 3:image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 调整尺寸if target_size is not None:image = cv2.resize(image, target_size, interpolation=cv2.INTER_AREA)# 归一化if normalize:image = image.astype(np.float32) / 255.0return imagedef preprocess_watermark(watermark, target_shape):"""水印预处理函数:param watermark: 输入水印,可以是二值图像或文本:param target_shape: 目标形状:return: 预处理后的水印图像"""if isinstance(watermark, str):# 文本水印转换为图像watermark_img = text_to_image(watermark, target_shape)else:# 图像水印处理watermark_img = cv2.resize(watermark, (target_shape[1], target_shape[0]))# 二值化处理if len(watermark_img.shape) == 3:watermark_img = cv2.cvtColor(watermark_img, cv2.COLOR_BGR2GRAY)# 归一化到[0,1]watermark_img = watermark_img.astype(np.float32) / 255.0return watermark_imgdef text_to_image(text, shape, font_scale=0.8, thickness=2):"""将文本转换为图像"""img = np.zeros(shape, dtype=np.uint8)font = cv2.FONT_HERSHEY_SIMPLEXtext_size = cv2.getTextSize(text, font, font_scale, thickness)[0]text_x = (shape[1] - text_size[0]) // 2text_y = (shape[0] + text_size[1]) // 2cv2.putText(img, text, (text_x, text_y), font, font_scale, (255, 255, 255), thickness)return img
3.2.2 基于人眼视觉系统(HVS)的优化

利用人眼视觉系统特性,在不易察觉的区域嵌入更强水印。

def calculate_hvs_mask(image, block_size=8):"""基于人眼视觉系统计算掩码在纹理复杂和边缘区域可以嵌入更强水印"""# 计算梯度幅值sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)gradient_magnitude = np.sqrt(sobelx**2 + sobely**2)# 计算局部方差local_variance = np.zeros_like(image)for i in range(0, image.shape[0], block_size):for j in range(0, image.shape[1], block_size):block = image[i:i+block_size, j:j+block_size]if block.size > 0:local_variance[i:i+block_size, j:j+block_size] = np.var(block)# 归一化gradient_magnitude = (gradient_magnitude - gradient_magnitude.min()) / (gradient_magnitude.max() - gradient_magnitude.min() + 1e-10)local_variance = (local_variance - local_variance.min()) / (local_variance.max() - local_variance.min() + 1e-10)# 结合梯度和方差信息hvs_mask = 0.7 * gradient_magnitude + 0.3 * local_variancereturn hvs_mask

3.3 水印嵌入优化

def embed_watermark_optimized(host_image, watermark, wavelet='haar', level=2, base_alpha=0.05):"""优化的水印嵌入函数:param host_image: 主机图像:param watermark: 水印图像或文本:param wavelet: 使用的小波基:param level: 小波分解层数:param base_alpha: 基础水印强度:return: 含水印图像、嵌入参数"""# 预处理主机图像host_processed = preprocess_image(host_image)# 预处理水印watermark_processed = preprocess_watermark(watermark, host_processed.shape)# 计算HVS掩码和自适应alphahvs_mask = calculate_hvs_mask(host_processed)alpha_map = adaptive_alpha(hvs_mask, base_alpha=base_alpha)# 小波分解coeffs = pywt.wavedec2(host_processed, wavelet, level=level)cA = coeffs[0]  # 近似系数# 在近似系数中嵌入水印watermark_resized = cv2.resize(watermark_processed, (cA.shape[1], cA.shape[0]))# 使用SVD嵌入U, S, Vh = svd(cA, full_matrices=False)S_modified = S + alpha_map[:S.shape[0], :S.shape[1]] * watermark_resized# 重构近似系数cA_modified = np.dot(U, np.dot(np.diag(S_modified), Vh))# 更新系数coeffs_modified = list(coeffs)coeffs_modified[0] = cA_modified# 小波重构watermarked_image = pywt.waverec2(coeffs_modified, wavelet)# 后处理watermarked_image = np.clip(watermarked_image, 0, 1)# 保存嵌入参数用于提取embed_params = {'U': U,'S': S,'Vh': Vh,'alpha_map': alpha_map,'wavelet': wavelet,'level': level,'watermark_shape': watermark_resized.shape}return watermarked_image, embed_paramsdef block_based_embedding(host_image, watermark, block_size=64, wavelet='haar'):"""基于分块的水印嵌入,提高局部适应性"""height, width = host_image.shapewatermarked_image = np.copy(host_image)embed_params = {}# 确保水印可以被分块整除wm_height, wm_width = watermark.shapeblocks_vertical = height // block_sizeblocks_horizontal = width // block_size# 调整水印尺寸watermark_resized = cv2.resize(watermark, (blocks_horizontal, blocks_vertical))param_blocks = {}for i in range(blocks_vertical):for j in range(blocks_horizontal):# 提取图像块block = host_image[i*block_size:(i+1)*block_size, j*block_size:(j+1)*block_size]if block.size == 0:continue# 计算该块的纹理复杂度texture = np.std(block)alpha = 0.05 + 0.15 * (texture / (np.std(host_image) + 1e-10))# 小波分解coeffs = pywt.wavedec2(block, wavelet, level=2)cA = coeffs[0]# 嵌入水印位if i < watermark_resized.shape[0] and j < watermark_resized.shape[1]:wm_bit = watermark_resized[i, j]# SVD分解U, S, Vh = svd(cA, full_matrices=False)S_modified = S + alpha * wm_bit# 重构cA_modified = np.dot(U, np.dot(np.diag(S_modified), Vh))# 更新系数coeffs_modified = list(coeffs)coeffs_modified[0] = cA_modified# 逆小波变换block_modified = pywt.waverec2(coeffs_modified, wavelet)# 放回图像watermarked_image[i*block_size:(i+1)*block_size, j*block_size:(j+1)*block_size] = block_modified# 保存参数param_blocks[(i, j)] = {'U': U,'S': S,'Vh': Vh,'alpha': alpha}embed_params['param_blocks'] = param_blocksembed_params['block_size'] = block_sizeembed_params['wm_shape'] = watermark_resized.shapereturn watermarked_image, embed_params

3.4 水印提取优化

def extract_watermark_optimized(watermarked_image, embed_params, original_image=None):"""优化的水印提取函数:param watermarked_image: 含水印图像:param embed_params: 嵌入时保存的参数:param original_image: 原始图像(非盲水印时需要):return: 提取的水印"""# 预处理图像watermarked_processed = preprocess_image(watermarked_image)if 'param_blocks' in embed_params:# 分块水印提取return extract_block_based(watermarked_processed, embed_params, original_image)else:# 全局水印提取return extract_global(watermarked_processed, embed_params, original_image)def extract_global(watermarked_image, embed_params, original_image):"""全局水印提取"""wavelet = embed_params['wavelet']level = embed_params['level']U = embed_params['U']S = embed_params['S']Vh = embed_params['Vh']alpha_map = embed_params['alpha_map']wm_shape = embed_params['watermark_shape']# 小波分解coeffs = pywt.wavedec2(watermarked_image, wavelet, level=level)cA_modified = coeffs[0]# SVD分解修改后的近似系数U_mod, S_mod, Vh_mod = svd(cA_modified, full_matrices=False)# 提取水印watermark_extracted = (S_mod - S) / alpha_map[:S.shape[0], :S.shape[1]]# 调整尺寸watermark_extracted = cv2.resize(watermark_extracted, (wm_shape[1], wm_shape[0]))return watermark_extracteddef extract_block_based(watermarked_image, embed_params, original_image):"""分块水印提取"""param_blocks = embed_params['param_blocks']block_size = embed_params['block_size']wm_shape = embed_params['wm_shape']wavelet = embed_params.get('wavelet', 'haar')height, width = watermarked_image.shapewatermark_extracted = np.zeros(wm_shape)for i in range(wm_shape[0]):for j in range(wm_shape[1]):if (i, j) not in param_blocks:continue# 提取图像块block = watermarked_image[i*block_size:(i+1)*block_size, j*block_size:(j+1)*block_size]if block.size == 0:continue# 获取该块的参数params = param_blocks[(i, j)]U = params['U']S = params['S']Vh = params['Vh']alpha = params['alpha']# 小波分解coeffs = pywt.wavedec2(block, wavelet, level=2)cA_modified = coeffs[0]# SVD分解U_mod, S_mod, Vh_mod = svd(cA_modified, full_matrices=False)# 提取水印wm_value = (S_mod - S) / alphawatermark_extracted[i, j] = np.mean(wm_value)return watermark_extracteddef blind_extraction(watermarked_image, wavelet='haar', level=2, wm_shape=(64, 64)):"""盲水印提取(不需要原始图像)这种方法鲁棒性较差,但适用于某些场景"""# 小波分解coeffs = pywt.wavedec2(watermarked_image, wavelet, level=level)cA = coeffs[0]# 假设水印嵌入在奇异值中U, S, Vh = svd(cA, full_matrices=False)# 使用统计方法估计水印# 这里使用简单的阈值方法,实际应用中可能需要更复杂的方法watermark_estimated = np.zeros_like(cA)mean_S = np.mean(S)std_S = np.std(S)# 假设水印是二值的,通过统计异常值来提取threshold = mean_S + std_Swatermark_estimated = (S > threshold).astype(np.float32)# 调整尺寸watermark_extracted = cv2.resize(watermark_estimated, (wm_shape[1], wm_shape[0]))return watermark_extracted

3.5 后处理与增强

def postprocess_watermark(extracted_watermark, method='threshold', **kwargs):"""后处理提取的水印,增强可读性"""if method == 'threshold':# 二值化threshold = kwargs.get('threshold', 0.5)processed = (extracted_watermark > threshold).astype(np.float32)elif method == 'median_filter':# 中值滤波kernel_size = kwargs.get('kernel_size', 3)processed = cv2.medianBlur((extracted_watermark * 255).astype(np.uint8), kernel_size)processed = processed.astype(np.float32) / 255.0elif method == 'wiener_filter':# 维纳滤波processed = cv2.filter2D(extracted_watermark, -1, wiener_kernel(5))else:processed = extracted_watermarkreturn processeddef wiener_kernel(size=5):"""生成维纳滤波核"""kernel = np.ones((size, size)) / (size * size)return kerneldef enhance_watermark_quality(watermark, enhance_method='histogram_equalization'):"""增强水印质量"""if enhance_method == 'histogram_equalization':# 直方图均衡化watermark_uint8 = (watermark * 255).astype(np.uint8)enhanced = cv2.equalizeHist(watermark_uint8)return enhanced.astype(np.float32) / 255.0elif enhance_method == 'contrast_stretch':# 对比度拉伸min_val = np.min(watermark)max_val = np.max(watermark)if max_val > min_val:enhanced = (watermark - min_val) / (max_val - min_val)else:enhanced = watermarkreturn enhancedelse:return watermark

3.6 鲁棒性测试与评估

def test_robustness(watermarked_image, original_image, embed_params, attacks=None):"""测试水印鲁棒性"""if attacks is None:attacks = {'gaussian_noise': lambda img: add_gaussian_noise(img, mean=0, sigma=0.01),'salt_pepper': lambda img: add_salt_pepper_noise(img, amount=0.01),'gaussian_blur': lambda img: cv2.GaussianBlur(img, (5, 5), 0.5),'jpeg_compression': lambda img: jpeg_compression(img, quality=70),'cropping': lambda img: cropping_attack(img, ratio=0.1),'rotation': lambda img: rotate_image(img, angle=5),'scaling': lambda img: scaling_attack(img, ratio=0.9)}results = {}extracted_watermarks = {}for attack_name, attack_func in attacks.items():# 应用攻击attacked_image = attack_func(watermarked_image.copy())# 提取水印try:extracted_wm = extract_watermark_optimized(attacked_image, embed_params, original_image)extracted_watermarks[attack_name] = extracted_wm# 评估提取质量(如果有原始水印)# 这里需要原始水印信息,实际应用中可能需要调整except Exception as e:print(f"攻击 {attack_name} 失败: {e}")extracted_watermarks[attack_name] = Nonereturn extracted_watermarksdef add_gaussian_noise(image, mean=0, sigma=0.01):"""添加高斯噪声"""noise = np.random.normal(mean, sigma, image.shape)noisy_image = image + noisereturn np.clip(noisy_image, 0, 1)def add_salt_pepper_noise(image, amount=0.01):"""添加椒盐噪声"""noisy_image = np.copy(image)# 盐噪声salt_mask = np.random.random(image.shape) < amount/2noisy_image[salt_mask] = 1# 椒噪声pepper_mask = np.random.random(image.shape) < amount/2noisy_image[pepper_mask] = 0return noisy_imagedef jpeg_compression(image, quality=70):"""JPEG压缩攻击"""# 转换为0-255范围image_uint8 = (image * 255).astype(np.uint8)# JPEG压缩encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]result, encimg = cv2.imencode('.jpg', image_uint8, encode_param)# 解码decimg = cv2.imdecode(encimg, 0)return decimg.astype(np.float32) / 255.0def cropping_attack(image, ratio=0.1):"""裁剪攻击"""h, w = image.shapecrop_h = int(h * ratio)crop_w = int(w * ratio)cropped = image[crop_h:-crop_h, crop_w:-crop_w]# 恢复原始尺寸return cv2.resize(cropped, (w, h))def rotate_image(image, angle=5):"""旋转攻击"""h, w = image.shapecenter = (w // 2, h // 2)M = cv2.getRotationMatrix2D(center, angle, 1.0)rotated = cv2.warpAffine(image, M, (w, h))return rotateddef scaling_attack(image, ratio=0.9):"""缩放攻击"""h, w = image.shapescaled = cv2.resize(image, (int(w * ratio), int(h * ratio)))# 恢复原始尺寸return cv2.resize(scaled, (w, h))def calculate_metrics(original, watermarked, extracted_wm, original_wm=None):"""计算各种评估指标"""metrics = {}# 图像质量指标metrics['psnr'] = psnr(original, watermarked, data_range=1.0)metrics['ssim'] = ssim(original, watermarked, data_range=1.0)if original_wm is not None and extracted_wm is not None:# 调整尺寸以便比较extracted_resized = cv2.resize(extracted_wm, (original_wm.shape[1], original_wm.shape[0]))# 水印相似度指标metrics['wm_correlation'] = np.corrcoef(original_wm.flatten(), extracted_resized.flatten())[0, 1]metrics['wm_ber'] = calculate_ber(original_wm, extracted_resized)return metricsdef calculate_ber(original, extracted, threshold=0.5):"""计算误码率(Bit Error Rate)"""original_binary = (original > threshold).astype(np.int8)extracted_binary = (extracted > threshold).astype(np.int8)if original_binary.shape != extracted_binary.shape:extracted_binary = cv2.resize(extracted_binary, (original_binary.shape[1], original_binary.shape[0]))error_bits = np.sum(original_binary != extracted_binary)total_bits = original_binary.sizereturn error_bits / total_bits

3.7 完整的水印系统类

class RemoteSensingWatermarkSystem:"""完整的遥感图像水印系统"""def __init__(self, config=None):if config is None:config = {'wavelet': 'haar','level': 2,'base_alpha': 0.05,'max_alpha': 0.2,'block_size': 64,'embed_method': 'adaptive_global'  # 'adaptive_global' or 'block_based'}self.config = configself.embed_params = Nonedef embed(self, host_image, watermark):"""嵌入水印"""# 预处理主机图像host_processed = preprocess_image(host_image)# 预处理水印watermark_processed = preprocess_watermark(watermark, host_processed.shape)if self.config['embed_method'] == 'adaptive_global':watermarked_image, self.embed_params = embed_watermark_optimized(host_processed, watermark_processed,wavelet=self.config['wavelet'],level=self.config['level'],base_alpha=self.config['base_alpha'])elif self.config['embed_method'] == 'block_based':watermarked_image, self.embed_params = block_based_embedding(host_processed, watermark_processed,block_size=self.config['block_size'],wavelet=self.config['wavelet'])else:raise ValueError("不支持的嵌入方法")# 转换为0-255范围输出watermarked_uint8 = (watermarked_image * 255).astype(np.uint8)return watermarked_uint8def extract(self, watermarked_image, original_image=None):"""提取水印"""if self.embed_params is None:raise ValueError("请先嵌入水印或提供嵌入参数")watermarked_processed = preprocess_image(watermarked_image)if original_image is not None:original_processed = preprocess_image(original_image)else:original_processed = Noneextracted_wm = extract_watermark_optimized(watermarked_processed, self.embed_params, original_processed)# 后处理extracted_processed = postprocess_watermark(extracted_wm, method='threshold')extracted_enhanced = enhance_watermark_quality(extracted_processed)# 转换为0-255范围输出extracted_uint8 = (extracted_enhanced * 255).astype(np.uint8)return extracted_uint8def test_robustness(self, watermarked_image, original_image, attacks=None):"""测试鲁棒性"""watermarked_processed = preprocess_image(watermarked_image)original_processed = preprocess_image(original_image)return test_robustness(watermarked_processed, original_processed, self.embed_params, attacks)def evaluate(self, original_image, watermarked_image, original_watermark=None):"""全面评估系统性能"""original_processed = preprocess_image(original_image)watermarked_processed = preprocess_image(watermarked_image)if original_watermark is not None:original_wm_processed = preprocess_watermark(original_watermark, original_processed.shape)else:original_wm_processed = None# 提取水印用于评估extracted_wm = self.extract(watermarked_image, original_image)extracted_processed = preprocess_image(extracted_wm, target_size=original_processed.shape)# 计算指标metrics = calculate_metrics(original_processed, watermarked_processed, extracted_processed, original_wm_processed)return metrics, extracted_wm

3.8 可视化工具

def plot_results(original, watermarked, extracted_wm, original_wm=None, metrics=None):"""可视化结果"""fig, axes = plt.subplots(2, 2, figsize=(12, 10))# 原始图像axes[0, 0].imshow(original, cmap='gray')axes[0, 0].set_title('原始图像')axes[0, 0].axis('off')# 含水印图像axes[0, 1].imshow(watermarked, cmap='gray')axes[0, 1].set_title('含水印图像')axes[0, 1].axis('off')# 提取的水印axes[1, 0].imshow(extracted_wm, cmap='gray')axes[1, 0].set_title('提取的水印')axes[1, 0].axis('off')# 原始水印(如果有)if original_wm is not None:axes[1, 1].imshow(original_wm, cmap='gray')axes[1, 1].set_title('原始水印')else:axes[1, 1].axis('off')# 添加指标文本if metrics is not None:metrics_text = f"PSNR: {metrics.get('psnr', 0):.2f} dB\nSSIM: {metrics.get('ssim', 0):.4f}"if 'wm_correlation' in metrics:metrics_text += f"\n相关系数: {metrics['wm_correlation']:.4f}"if 'wm_ber' in metrics:metrics_text += f"\n误码率: {metrics['wm_ber']:.4f}"plt.figtext(0.5, 0.01, metrics_text, ha='center', fontsize=12, bbox=dict(facecolor='lightgray', alpha=0.5))plt.tight_layout()plt.show()def plot_robustness_test(results, original_wm=None):"""可视化鲁棒性测试结果"""n_attacks = len(results)n_cols = 3n_rows = (n_attacks + n_cols - 1) // n_colsfig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5 * n_rows))axes = axes.flatten()for i, (attack_name, extracted_wm) in enumerate(results.items()):if extracted_wm is not None:axes[i].imshow(extracted_wm, cmap='gray')axes[i].set_title(attack_name)axes[i].axis('off')# 隐藏多余的子图for j in range(i + 1, len(axes)):axes[j].axis('off')plt.tight_layout()plt.show()

4. 使用示例

# 示例使用代码
if __name__ == "__main__":# 读取遥感图像image_path = "remote_sensing_image.tif"original_image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)# 创建水印(可以是文本或图像)watermark_text = "Copyright 2023"# 初始化水印系统watermark_system = RemoteSensingWatermarkSystem({'wavelet': 'haar','level': 2,'base_alpha': 0.05,'embed_method': 'adaptive_global'})# 嵌入水印watermarked_image = watermark_system.embed(original_image, watermark_text)# 提取水印extracted_watermark = watermark_system.extract(watermarked_image, original_image)# 评估性能metrics, extracted_wm = watermark_system.evaluate(original_image, watermarked_image, watermark_text)# 可视化结果plot_results(original_image, watermarked_image, extracted_wm, text_to_image(watermark_text, original_image.shape), metrics)# 测试鲁棒性attacks = {'高斯噪声': lambda img: add_gaussian_noise(img, sigma=0.02),'椒盐噪声': lambda img: add_salt_pepper_noise(img, amount=0.03),'高斯模糊': lambda img: cv2.GaussianBlur(img, (5, 5), 0.8),'JPEG压缩': lambda img: jpeg_compression(img, quality=60),}robustness_results = watermark_system.test_robustness(watermarked_image, original_image, attacks)plot_robustness_test(robustness_results)

5. 性能优化建议

  1. 多线程处理:对于大型遥感图像,使用多线程进行分块处理
  2. GPU加速:利用CUDA或OpenCL进行小波变换和矩阵运算加速
  3. 内存优化:使用内存映射文件处理超大型图像
  4. 算法优化:针对特定类型遥感图像优化参数

6. 总结

本文提出了一套完整的遥感图像水印系统优化方案,主要改进包括:

  1. 采用DWT+SVD组合算法提高鲁棒性
  2. 引入自适应水印强度调整改善不可见性
  3. 实现基于HVS的嵌入策略增强视觉质量
  4. 提供分块和全局两种嵌入方式适应不同需求
  5. 完善的鲁棒性测试和评估框架
  6. 丰富的可视化工具便于结果分析

该优化方案显著提升了水印系统的不可见性、鲁棒性和实用性,能够满足大多数遥感图像版权保护的需求。实际应用中,可以根据具体图像特性和需求调整参数,进一步优化性能。

通过以上优化,遥感图像水印系统能够在保持高图像质量的同时,有效抵抗各种常见图像处理攻击,为遥感图像的版权保护提供了可靠的技术手段。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/bicheng/98255.shtml
繁体地址,请注明出处:http://hk.pswp.cn/bicheng/98255.shtml
英文地址,请注明出处:http://en.pswp.cn/bicheng/98255.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙高效数据处理框架全攻略:缓存、并行与流式实战

摘要 在如今的物联网和智能设备世界里&#xff0c;数据已经成为最关键的资源。无论是可穿戴设备、智能家居&#xff0c;还是车载系统&#xff0c;每一秒都会产生大量数据。如果缺少一套高效的数据处理框架&#xff0c;开发者就可能面临内存溢出、处理延迟大、设备卡顿等问题。本…

零售企业数字化转型的道、法、术:基于开源AI大模型AI智能名片S2B2C商城小程序的战略重构

摘要 在数字经济与消费升级的双重驱动下&#xff0c;零售企业正经历从"流量争夺"到"用户时间争夺"的范式转变。本文以阿里巴巴、京东、万达三大巨头的战略实践为样本&#xff0c;结合开源AI大模型、AI智能名片与S2B2C商城小程序的技术特性&#xff0c;提出…

瑞云渲染为电影《731》提供云渲染技术支持,助力影片全球上映

在“九一八事变”94周年这一庄严沉重的纪念时刻&#xff0c;抗战电影《731》&#xff08;海外名&#xff1a;《EVIL UNBOUND》&#xff09;于世界各地上映&#xff0c;激起广泛的社会反响与深远的历史思考。 瑞云渲染&#xff08;Renderbus&#xff09;作为全球领先的云渲染服…

EasyDSS视频直播RTMP推流技术如何实现多机型的无人机视频统一直播

在当今这个瞬息万变的传媒时代&#xff0c;无人机与推流直播的结合&#xff0c;正以前所未有的方式重塑着信息传播的边界。无人机以其独特的空中视角和灵活的机动性&#xff0c;为直播行业带来了革命性的变化&#xff0c;而推流直播技术的成熟&#xff0c;则让这一变化得以实时…

str.maketrans() 方法

str.maketrans() 方法 功能概述 str.maketrans() 是 Python 中字符串对象的一个静态方法&#xff0c;用于创建一个字符映射转换表。这个转换表本质上是一个字典&#xff0c;它定义了字符之间的替换规则&#xff0c;后续可以被 str.translate() 方法使用&#xff0c;以实现字符串…

敏感词检测API平台推荐

敏感词检测API平台推荐 背景简介 敏感词检测用于识别文本中的违规、涉政、涉黄、辱骂等敏感词&#xff0c;帮助产品在评论、弹幕、客服对话、运营文案、广告投放等环节实现自动化质检与合规拦截。市场上主要有两类服务商&#xff1a; 专业型厂商&#xff1a;聚焦算法与工程落…

Day25_【深度学习(3)—PyTorch使用(6)—张量拼接操作】

张量的拼接操作在神经网络搭建过程中是非常常用的方法&#xff0c;例如: 在后面将要学习的注意力机制中都使用到了张量拼接。torch.cat 函数可以将两个张量根据指定的维度拼接起来&#xff0c;不改变数据维度。前提&#xff1a;除了拼接的维度&#xff0c;其他维度一定要相同。…

机器视觉在PCB制造中的检测应用

机器视觉在PCB制造中的检测应用&#x1f3af;机器视觉在PCB制造中的检测应用&#x1f3af;一、基材预处理阶段&#xff1a;基材表面缺陷检测&#x1f3af;二、线路制作阶段&#xff1a;线路精度与缺陷检测&#x1f3af;三、钻孔与导通孔加工阶段&#xff1a;孔位与孔质量检测&a…

Python面试题及详细答案150道(136-150) -- 网络编程及常见问题篇

《前后端面试题》专栏集合了前后端各个知识模块的面试题&#xff0c;包括html&#xff0c;javascript&#xff0c;css&#xff0c;vue&#xff0c;react&#xff0c;java&#xff0c;Openlayers&#xff0c;leaflet&#xff0c;cesium&#xff0c;mapboxGL&#xff0c;threejs&…

【pdf.js】pdf检索对应文本和高亮功能

文章目录需求场景1、使用pdf.js解决pdf.js跨域2、预览方案3、检索方案4、实现效果✒️总结需求场景 本文主要针对网页端 PDF 本地预览场景&#xff0c;支持通过关键字对 PDF 进行检索查询&#xff0c;当点击检索结果列表中的对应关键字时&#xff0c;可同步在预览界面中触发内容…

kafka--基础知识点--9.1--consumer 至多一次、至少一次、精确一次

1 自动提交 1.1 原理&#xff1a; Kafka 消费者后台线程每隔 auto.commit.interval.ms 自动提交最近一次 poll() 的 offset 无需开发者干预 1.2 示例&#xff1a; enable.auto.committrue auto.commit.interval.ms5000 # 每 5 秒自动提交一次 from confluent_kafka import Con…

Python中的类:从入门到实战,掌握面向对象编程的核心

目录 一、类的概念&#xff1a;从“模板”到“个体” 1.1 什么是类&#xff1f; 1.2 类与对象的关系&#xff1a;模板与实例 1.3 类的核心价值&#xff1a;封装与抽象 二、类的形式&#xff1a;Python中的类定义语法 2.1 类的基本定义 2.2 关键组成解析 &#xff08;1&a…

用户争夺与智能管理:定制开发开源AI智能名片S2B2C商城小程序的战略价值与实践路径

摘要 在零售行业数字化转型的浪潮中&#xff0c;用户争夺已从传统流量竞争转向对用户24小时时间分配权的深度渗透。本文以定制开发开源AI智能名片S2B2C商城小程序为核心研究对象&#xff0c;系统探讨其通过技术赋能重构用户接触场景、提升转化效率、增强会员黏性的作用机制。结…

数学_向量投影相关

Part 1 你的问题是&#xff1a;设相机光心的朝向 w (0, 0, 1)&#xff08;即朝向正前方&#xff0c;Z 轴正方向&#xff09;&#xff0c; 在 相机坐标系下有一个平面&#xff0c;其法向量为 n_cam&#xff0c; 问&#xff1a;w 在该平面上的投影的单位向量 w_p&#xff0c;是不…

从RTSP到HLS:构建一个简单的流媒体转换服务(java spring)

从RTSP到HLS&#xff1a;构建一个简单的流媒体转换服务(java spring) 在当今的网络环境中&#xff0c;实时视频流媒体应用越来越广泛&#xff0c;从在线直播到安防监控&#xff0c;都离不开流媒体技术的支持。然而&#xff0c;不同的流媒体协议有着各自的特点和适用场景。本文…

【代码随想录算法训练营——Day15】二叉树——110.平衡二叉树、257.二叉树的所有路径、404.左叶子之和、222.完全二叉树的节点个数

LeetCode题目链接 https://leetcode.cn/problems/balanced-binary-tree/ https://leetcode.cn/problems/binary-tree-paths/ https://leetcode.cn/problems/sum-of-left-leaves/ https://leetcode.cn/problems/count-complete-tree-nodes/ 题解 110.平衡二叉树想到用左子树的高…

JVM新生代/老年代垃圾回收器、内存分配与回收策略

新生代垃圾收集器 1. Serial收集器 serial收集器即串行收集器&#xff0c;是一个单线程收集器。 串行收集器在进行垃圾回收时只使用一个CPU或一条收集线程去完成垃圾回收工作&#xff0c;并且会暂停其他的工作线程&#xff08;stop the world&#xff09;&#xff0c;直至回收完…

Unity Mirror 多人同步 基础教程

Unity Mirror 多人同步 基础教程MirrorNetworkManager&#xff08;网络管理器&#xff09;Configuration&#xff1a;配置Auto-Start Options&#xff1a;自动启动Scene Management&#xff1a;场景管理Network Info&#xff1a;网络信息Authentication&#xff1a;身份验证Pla…

基于红尾鹰优化的LSTM深度学习网络模型(RTH-LSTM)的一维时间序列预测算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.部分程序 4.算法理论概述 5.完整程序 1.程序功能描述 红尾鹰优化的LSTM&#xff08;RTH-LSTM&#xff09;算法&#xff0c;是将红尾鹰优化算法&#xff08;Red-Tailed Hawk Optimization, RTHO&#xff09;与长短期…

深度学习“调参”黑话手册:学习率、Batch Size、Epoch都是啥?

点击 “AladdinEdu&#xff0c;同学们用得起的【H卡】算力平台”&#xff0c;注册即送-H卡级别算力&#xff0c;80G大显存&#xff0c;按量计费&#xff0c;灵活弹性&#xff0c;顶级配置&#xff0c;学生更享专属优惠。 引言&#xff1a;从"炼丹"到科学&#xff0c;…