目录

1. 概述

1.1 系统架构

1.1.1 架构图

​编辑

1.2 环境准备

2. 部署prometheus

2.1 创建Namespace

2.2 创建ConfigMap资源

2.3 创建ServiceAccount,Clusterrole,Clusterrolebinding,Service,Deployment,ingress,persistentVolumeClaim

3. 部署Node_exporter组件

3.1 创建Daemonsets资源

4. 部署Kube_state_metrics组件

4.1 创建ServiceAccount,ClusterRole,ClusterRoleBinding,Deployment,Service

5. 部署Grafana可视化平台

5.1 创建PersistentVolumeClaim,Deployment,Service

6. 部署命令

7. 访问服务

8. grafana仪表盘展示

8.1 为grafana配置数据源

8.2 导入仪表盘

8.3 仪表盘展示


1. 概述

Prometheus是一个开源的监控和告警系统,特别适合云原生环境。本文将详细介绍如何在Kubernetes集群中部署一个完整的Prometheus监控系统,包括Prometheus Server、Node Exporter、Kube-state-metrics和Grafana等组件。

1.1 系统架构

Prometheus监控系统包含以下组件:

  • Prometheus Server: 核心监控服务器,负责数据采集和存储

  • Node Exporter: 节点级指标收集器

  • Kube-state-metrics: Kubernetes集群状态指标收集器

  • Grafana: 数据可视化和仪表板

1.1.1 架构图

1.2 环境准备

IP主机名备注
192.168.48.11master1master节点,k8s1.32.7
192.168.48.12master2master节点,k8s1.32.7
192.168.48.13master3master节点,k8s1.32.7
192.168.48.14node01node节点,k8s1.32.7
192.168.48.15node02noder节点,k8s1.32.7
192.168.48.16node03node节点,k8s1.32.7
192.168.48.19databaseharbor仓库,nfs服务器

本次使用k8s高可用集群,且部署均采用国内镜像,即使没有harbor仓库也能正常部署,如果镜像拉取超时,请在评论区留言,博主一定及时补。nfs服务器一定要有,如果其他存储方案如ceph,hostpath等自行更改yaml文件配置。

k8s搭建nfs共享存储参考往期博客:

k8s搭建nfs共享存储

k8s集群搭建参考往期博客:

openeuler24.03部署k8s1.32.7集群(一主两从)

k8s高可用集群搭建参考往期博客:

openeuler24.03部署k8s1.32.7高可用集群(三主三从)

2. 部署prometheus

2.1 创建Namespace

vim prometheus-namespace.yaml
apiVersion: v1
kind: Namespace
metadata:name: monitorlabels:name: monitorpurpose: monitoring

2.2 创建ConfigMap资源

vim prometheus-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:name: prometheus-confignamespace: monitor
data:prometheus.yml: |global:scrape_interval: 15sevaluation_interval: 15sscrape_configs:# 采集 Prometheus 自身- job_name: 'prometheus'kubernetes_sd_configs:- role: endpointsnamespaces:names: [monitor]relabel_configs:- source_labels: [__meta_kubernetes_service_name]regex: prometheus-svcaction: keep- source_labels: [__meta_kubernetes_endpoint_port_name]regex: webaction: keep
​# 采集 CoreDNS- job_name: 'coredns'kubernetes_sd_configs:- role: endpointsnamespaces:names: [kube-system]relabel_configs:- source_labels: [__meta_kubernetes_service_name]regex: kube-dnsaction: keep- source_labels: [__meta_kubernetes_endpoint_port_name]regex: metricsaction: keep
​# 采集 kube-apiserver- job_name: 'kube-apiserver'scheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtinsecure_skip_verify: falsebearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenkubernetes_sd_configs:- role: endpointsnamespaces:names: [default, kube-system]relabel_configs:- source_labels: [__meta_kubernetes_service_name]regex: kubernetesaction: keep- source_labels: [__meta_kubernetes_endpoint_port_name]regex: httpsaction: keep
​# 采集 node-exporter- job_name: 'node-exporter'kubernetes_sd_configs:- role: noderelabel_configs:- source_labels: [__address__]regex: '(.*):10250'replacement: '${1}:9100'target_label: __address__action: replace
​# 采集 cadvisor- job_name: 'cadvisor'kubernetes_sd_configs:- role: nodescheme: httpstls_config:insecure_skip_verify: trueca_file: '/var/run/secrets/kubernetes.io/serviceaccount/ca.crt'bearer_token_file: '/var/run/secrets/kubernetes.io/serviceaccount/token'relabel_configs:- target_label: __metrics_path__replacement: /metrics/cadvisor

2.3 创建ServiceAccount,Clusterrole,Clusterrolebinding,Service,Deployment,ingress,persistentVolumeClaim

vim prometheus.yaml
#创建SA
apiVersion: v1
kind: ServiceAccount
metadata:name: prometheusnamespace: monitor---
#创建clusterrole
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:name: prometheus
rules:
- apiGroups:- ""resources:- nodes- services- endpoints- pods- nodes/proxy- nodes/proxyverbs:- get- list- watch
- apiGroups:- "extenstions"resources:- ingressesverbs:- get- list- watch
- apiGroups:- ""resources:- configmaps- nodes/metricsverbs:- get
- nonResourceURLs:- /metricsverbs:- get---
#创建clusterrolebinding
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:name: prometheus
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: prometheus
subjects:
- kind: ServiceAccountname: prometheusnamespace: monitor---
#创建svc
apiVersion: v1
kind: Service
metadata:name: prometheus-svcnamespace: monitorlabels:app: prometheusannotations:prometheus_io_scrape: "true"  # 注解,有这个才可以被Prometheus发现
spec:selector:app: prometheustype: NodePortports:- name: webnodePort: 32224port: 9090targetPort: http---
#创建ingress
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:name: prometheus-ingressnamespace: monitor
spec:ingressClassName: nginxrules:- host: www.myprometheus.comhttp:paths:- path: /pathType: Prefixbackend:service:name:  prometheus-svcport:number: 9090
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: prometheus-pvc  # PVC 名称namespace: monitor
spec:accessModes:- ReadWriteOnce  # 访问模式(可选:ReadWriteOnce/ReadOnlyMany/ReadWriteMany)resources:requests:storage: 2Gi  # 请求的存储容量storageClassName: nfs-client  # 指定 StorageClass(根据集群环境调整)
---
#创建deployment
apiVersion: apps/v1
kind: Deployment
metadata:name: prometheusnamespace: monitorlabels:app: prometheus
spec:selector:matchLabels:app: prometheusreplicas: 1template:metadata:labels:app: prometheusspec:serviceAccountName: prometheusinitContainers:- name: "change-permission-of-directory"image: swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/prometheus/busybox:latestcommand: ["/bin/sh"]args: ["-c","chown -R 65534:65534 /prometheus"]securityContext:privileged: truevolumeMounts:- mountPath: "/etc/prometheus"name: config-volume- mountPath: "/prometheus"name: datacontainers:- image: swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prom/prometheus:latestname: prometheusargs:- "--config.file=/etc/prometheus/prometheus.yml"#指定prometheus配置文件路径- "--storage.tsdb.path=/prometheus"#指定tsdb数据库存储路径- "--web.enable-lifecycle"#允许热更新,curl localhost:9090/-/reload 进行热更新- "--web.console.libraries=/usr/share/prometheus/console_libraries"- "--web.console.templates=/usr/share/prometheus/consoles"ports:- containerPort: 9090name: httpvolumeMounts:- mountPath: "/etc/prometheus"name: config-volume- mountPath: "/prometheus"name: dataresources:requests:cpu: 100mmemory: 512Milimits:cpu: 100mmemory: 512Mivolumes:- name: datapersistentVolumeClaim:claimName: prometheus-pvc- configMap:name: prometheus-configname: config-volume
​

3. 部署Node_exporter组件

3.1 创建Daemonsets资源

vim node-exportet-daemonset.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:name: node-exporternamespace: monitorlabels:app: node-exporter
spec:selector:matchLabels:app: node-exportertemplate:metadata:labels:app: node-exporterspec:hostPID: truehostIPC: truehostNetwork: truenodeSelector:kubernetes.io/os: linuxcontainers:- name: node-exporterimage: docker.io/prom/node-exporter:latestargs:- --web.listen-address=$(HOSTIP):9100- --path.procfs=/host/proc- --path.sysfs=/host/sys- --path.rootfs=/host/root- --collector.filesystem.ignored-mount-points=^/(dev|proc|sys|var/lib/docker/.+)($|/)- --collector.filesystem.ignored-fs-types=^(autofs|binfmt_misc|cgroup|configfs|debugfs|devpts|devtmpfs|fusectl|hugetlbfs|mqueue|overlay|proc|procfs|pstore|rpc_pipefs|securityfs|sysfs|tracefs)$ports:- containerPort: 9100env:- name: HOSTIPvalueFrom:fieldRef:fieldPath: status.hostIPresources:requests:cpu: 150mmemory: 180Milimits:cpu: 150mmemory: 180MisecurityContext:runAsNonRoot: truerunAsUser: 65534volumeMounts:- name: procmountPath: /host/proc- name: sysmountPath: /host/sys- name: rootmountPath: /host/rootmountPropagation: HostToContainerreadOnly: truetolerations:- operator: "Exists"volumes:- name: prochostPath:path: /proc- name: devhostPath:path: /dev- name: syshostPath:path: /sys- name: roothostPath:path: /
​

创建Service

vim node-exportet-svc.yaml
apiVersion: v1
kind: Service
metadata:name: node-exporternamespace: monitorlabels:app: node-exporter
spec:selector:app: node-exporterports:- name: metricsport: 9100targetPort: 9100clusterIP: None  # Headless Service(直接通过 Pod IP 访问)

4. 部署Kube_state_metrics组件

4.1 创建ServiceAccount,ClusterRole,ClusterRoleBinding,Deployment,Service

kube-state-metrics.yaml
---
apiVersion: v1
kind: ServiceAccount
metadata:name: kube-state-metricsnamespace: monitor
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:name: kube-state-metrics
rules:
- apiGroups: [""]resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]verbs: ["list", "watch"]
- apiGroups: ["extensions"]resources: ["daemonsets", "deployments", "replicasets"]verbs: ["list", "watch"]
- apiGroups: ["apps"]resources: ["statefulsets"]verbs: ["list", "watch"]
- apiGroups: ["batch"]resources: ["cronjobs", "jobs"]verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]resources: ["horizontalpodautoscalers"]verbs: ["list", "watch"]
- apiGroups: ["networking.k8s.io"]resources: ["ingresses"]verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:name: kube-state-metrics
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: kube-state-metrics
subjects:
- kind: ServiceAccountname: kube-state-metricsnamespace: monitor
---
apiVersion: apps/v1
kind: Deployment
metadata:name: kube-state-metricsnamespace: monitor
spec:replicas: 1selector:matchLabels:app: kube-state-metricstemplate:metadata:labels:app: kube-state-metricsspec:serviceAccountName: kube-state-metricscontainers:- name: kube-state-metricsimage: swr.cn-north-4.myhuaweicloud.com/ddn-k8s/registry.k8s.io/kube-state-metrics/kube-state-metrics:v2.9.2imagePullPolicy: IfNotPresentports:- containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:annotations:prometheus.io/scrape: 'true'name: kube-state-metricsnamespace: monitorlabels:app: kube-state-metrics
spec:ports:- name: kube-state-metricsport: 8080protocol: TCPselector:app: kube-state-metrics

5. 部署Grafana可视化平台

5.1 创建PersistentVolumeClaim,Deployment,Service

vim grafana.yaml
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: grafana-pvc  # PVC 名称namespace: monitor
spec:accessModes:- ReadWriteOnce  # 访问模式(可选:ReadWriteOnce/ReadOnlyMany/ReadWriteMany)resources:requests:storage: 2Gi  # 请求的存储容量storageClassName: nfs-client  # 指定 StorageClass(根据集群环境调整)
---
apiVersion: apps/v1
kind: Deployment
metadata:name: grafana-servernamespace: monitor
spec:replicas: 1selector:matchLabels:task: monitoringk8s-app: grafanatemplate:metadata:labels:task: monitoringk8s-app: grafanaspec:containers:- name: grafanaimage: grafana/grafana:latestimagePullPolicy: IfNotPresentports:- containerPort: 3000protocol: TCPvolumeMounts:- mountPath: /var/lib/grafana/name: grafana-dataenv:- name: INFLUXDB_HOSTvalue: monitoring-influxdb- name: GF_SERVER_HTTP_PORTvalue: "3000"- name: GF_AUTH_BASIC_ENABLEDvalue: "false"- name: GF_AUTH_ANONYMOUS_ENABLEDvalue: "true"- name: GF_AUTH_ANONYMOUS_ORG_ROLEvalue: Admin- name: GF_SERVER_ROOT_URLvalue: /volumes:- name: grafana-datapersistentVolumeClaim:claimName: grafana-pvcaffinity:  # 调度优化(可选)nodeAffinity:preferredDuringSchedulingIgnoredDuringExecution:- weight: 1preference:matchExpressions:- key: node-role.kubernetes.io/monitoringoperator: Exists
---
apiVersion: v1
kind: Service
metadata:labels:kubernetes.io/cluster-service: 'true'kubernetes.io/name: monitoring-grafananame: grafana-svcnamespace: monitor
spec:ports:- port: 80targetPort: 3000nodePort: 31091selector:k8s-app: grafanatype: NodePort

6. 部署命令

按照以下顺序部署各个组件:

# 1. 创建命名空间
kubectl apply -f prometheus-namespace.yaml
​
# 2. 部署Prometheus配置
kubectl apply -f prometheus-configmap.yaml
​
# 3. 部署Prometheus主服务
kubectl apply -f prometheus.yaml
​
# 4. 部署Kube-state-metrics
kubectl apply -f kube-state-metrics.yaml
​
# 5. 部署Node Exporter
kubectl apply -f node-exportet-daemonset.yaml
kubectl apply -f node-exportet-svc.yaml
​
# 6. 部署Grafana
kubectl apply -f grafana.yaml

检查pod状态:

[root@master1 prometheus]# kubectl get pod -n monitor 
NAME                                 READY   STATUS    RESTARTS   AGE
grafana-server-64c9777c7b-drgdd      1/1     Running   0          110m
kube-state-metrics-6db447664-6r2wp   1/1     Running   0          110m
node-exporter-ccwk8                  1/1     Running   0          110m
node-exporter-fbq22                  1/1     Running   0          110m
node-exporter-hbtm6                  1/1     Running   0          110m
node-exporter-ndbhh                  1/1     Running   0          110m
node-exporter-sbb4p                  1/1     Running   0          110m
node-exporter-xd467                  1/1     Running   0          110m
prometheus-7cd9944dc4-lbjwx          1/1     Running   0          110m

7. 访问服务

部署完成后,可以通过以下方式访问服务:

  • Prometheus: http://<node-ip>:32224http://www.myprometheus.com(需要配置域名解析)

  • Grafana: http://<node-ip>:31091

前排提示:192.168.48.10是我的k8s集群高可用的vip,如果不是高可用,输入Pod所在的主机IP即可。

访问Prometheus:http://192.168.48.10:32224

访问grafana:http://192.168.48.10:31091/

8. grafana仪表盘展示

8.1 为grafana配置数据源

点击最下方save & test,出现Successfully queried the Prometheus API.则为成功。

8.2 导入仪表盘

仪表盘id:

  • node节点监控:16098

  • k8s集群监控:14249

8.3 仪表盘展示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/bicheng/92710.shtml
繁体地址,请注明出处:http://hk.pswp.cn/bicheng/92710.shtml
英文地址,请注明出处:http://en.pswp.cn/bicheng/92710.shtml

如若内容造成侵权/违法违规/事实不符,请联系英文站点网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Matplotlib库:Python数据可视化的基石,发现它的美

Matplotlib是Python中最基础、最广泛使用的数据可视化库&#xff0c;它提供了类似MATLAB的绘图接口&#xff0c;能够创建高质量的静态、动态和交互式图表。作为科学计算和数据可视化的核心工具&#xff0c;Matplotlib几乎成为Python数据科学生态系统的标准可视化组件。 今天与…

每日算法刷题Day59:8.9:leetcode 队列8道题,用时2h30min

一、基础 1.套路 1.队列常用在 BFS 中&#xff0c;见 网格图题单 和 图论题单。 2.队列(queue)是容器适配器&#xff0c;功能较少。 队尾插入元素&#xff0c;队首弹出元素&#xff0c;可以访问队首元素、队尾元素和队列长度。 无begin(),end()等迭代器 queue<int> qu…

Java选手如何看待Golang

写在前面&#xff1a;翻了很多博客&#xff0c;一直没有Java选手转行golang的学习经验贴&#xff0c;思考很久&#xff0c;写下这篇Java选手怎么看待golang这个冉冉新星。1.走完所有golang基础之后的感受&#xff08;1&#xff09;最大的不适应有这么几点&#xff1a;---变量定…

Codeforces Round 967 (Div. 2) D. Longest Max Min Subsequence

假设我们要选a[j]为答案数组b[i]&#xff0c;从i从1~m&#xff08;m为a数组中不同数的个数&#xff09;建立一个suf数组&#xff0c;代表以i开头的后缀有多少个不同且在b[1~i-1]中未出现过的的个数&#xff0c;预处理suf&#xff0c;发现后续我们怎么选数改变suf&#xff0c;su…

Linux运维新手的修炼手扎之第27天

mysql服务1 主从复制集群&#xff1a;多主机集群【复制】负载过大解决方案&#xff1a;横向扩展[增加服务器节点分散负载]、纵向扩展[提升单机硬件性能]复制工作原理&#xff1a;前提&#xff1a;基础数据一样&#xff0c;主节点上有同步数据用的账号主角色【二进制日志、binlo…

【Linux】Linux增删改查命令大全(附频率评级)

Linux增删改查命令大全&#xff08;附频率评级&#xff09;* 《Linux命令全景手册&#xff1a;增删改查全场景解析&#xff08;含136个高频命令&#xff09;》 按使用频率★分级 | 测试/运维/开发均适用 | 附思维导图下载一、命令全景表&#xff08;增删改查频率评级&#xff0…

SwiftUI 登录页面键盘约束冲突与卡顿优化全攻略

网罗开发&#xff08;小红书、快手、视频号同名&#xff09;大家好&#xff0c;我是 展菲&#xff0c;目前在上市企业从事人工智能项目研发管理工作&#xff0c;平时热衷于分享各种编程领域的软硬技能知识以及前沿技术&#xff0c;包括iOS、前端、Harmony OS、Java、Python等方…

建筑物实例分割数据集-9,700 张图片 城市规划与发展 灾害评估与应急响应 房地产市场分析 智慧城市管理 地理信息系统(GIS) 环境影响评估

建筑物实例分割数据集-9,700 张图片&#x1f4e6; 已发布目标检测数据集合集&#xff08;持续更新&#xff09;&#x1f3e2; 建筑物实例分割数据集介绍&#x1f4cc; 数据集概览包含类别&#x1f3af; 应用场景&#x1f5bc; 数据样本展示使用建议&#x1f31f; 数据集特色&am…

LeetCode 刷题【36. 有效的数独】

36. 有效的数独 自己做 解&#xff1a;多层for class Solution { public:bool isValidSudoku(vector<vector<char>>& board) {int hight board.size(); //长if (hight 0)return true;int wide board[0].size(); //宽//判断一行是否出现重复bool…

Java 日志从入门到精通:告别日志混乱

作为一名 Java 开发者&#xff0c;你是否曾在生产环境故障排查时面对过这样的困境&#xff1a;系统报错却找不到关键日志&#xff0c;日志文件大到无法打开&#xff0c;或者日志内容杂乱无章根本无法定位问题&#xff1f;日志作为系统运行的 “黑匣子”&#xff0c;其重要性不言…

系统开发 Day1

前端开发 目的&#xff1a; 开发一个平台&#xff08;网站&#xff09; - 前端开发&#xff1a;HTML CSS JavaScript - web框架&#xff1a;接受请求和处理 - MySQL数据库&#xff1a;存储数据的地方快速上手&#xff1a;基于Flask Web框架快速搭建一个网站 深度学习&#xff…

机器视觉任务(目标检测、实例分割、姿态估计、多目标跟踪、单目标跟踪、图像分类、单目深度估计)常用算法及公开数据集分享

本文按目标检测、实例分割、姿态估计、多目标跟踪、单目标跟踪、图像分类、单目深度估计七个任务分类&#xff0c;融合数据集介绍、评价指标及推荐算法&#xff0c;方便查阅&#xff1a; 一、目标检测 目标检测任务需定位图像中目标的边界框&#xff08;bounding box&#xff0…

MongoTemplate中setOnInsert与set方法的深度解析

MongoTemplate中setOnInsert与set方法的深度解析 在Spring Data MongoDB的MongoTemplate中&#xff0c;setOnInsert和set方法都是在更新文档时使用的&#xff0c;但它们在处理upsert操作&#xff08;即&#xff0c;如果文档不存在则插入&#xff0c;存在则更新&#xff09;时扮…

利用OJ判题的多语言优雅解耦方法深入体会模板方法模式、策略模式、工厂模式的妙用

在线评测系统&#xff08;Online Judge, OJ&#xff09;的核心是判题引擎&#xff0c;其关键挑战在于如何高效、安全且可扩展地支持多种编程语言。在博主的项目练习过程中&#xff0c;借鉴了相关设计模式实现一种架构设计方案&#xff0c;即通过组合运用模板方法、策略、工厂等…

[FOC电机控制]霍尔传感器于角度问题

如果电机有1对极(p1&#xff0c;那么每旋转一圈的机械角度&#xff0c;电气角度会转动一圈&#xff08;360&#xff09;。如果电机有2对极(p2&#xff0c;那么每旋转一圈的机械角度&#xff0c;电气角度会转动两圈&#xff08;720&#xff09;。

阿里云 Flink

阿里云 Flink 是阿里云基于Apache Flink打造的企业级实时计算平台&#xff0c;旨在为用户提供高效、稳定、易用的流处理与批处理能力&#xff0c;帮助企业快速构建实时数据处理链路&#xff0c;支撑实时业务决策。核心特性流批一体计算继承 Apache Flink “流批一体” 的核心优…

企业级高性能web服务器

1 web服务基础 1.1 正常情况的单次web服务访问流程&#xff1a; 正常情况下&#xff0c;单次 Web 服务访问流程从用户在客户端发起请求开始&#xff0c;到最终在客户端展示内容结束&#xff0c;涉及客户端、网络传输、服务器端等多个环节&#xff0c;以下是详细过程&#xff…

免费PDF编辑软件 pdf24-creator 及其安装包

最近发现了一款还算是不错的PDF编辑和阅读软件 pdf24-creator&#xff0c;官方下载网站为&#xff1a;https://tools.pdf24.org/zh/creator&#xff0c;但是官方下载如果没有魔法的话&#xff0c;下载速度很慢&#xff0c;比百度网盘下载还满&#xff0c;因此我把它分享到网盘。…

openvela之ADB

ADB&#xff08;Android Debug Bridge&#xff09;是一款功能丰富的命令行工具&#xff0c;旨在实现开发工作站与设备&#xff08;如模拟器、实体设备&#xff09;之间的通信。通过 ADB&#xff0c;开发者可以便捷地在设备上执行命令、传输文件、调试应用等。本文将详细介绍 AD…

如何控制需求交付节奏

有效控制需求的交付节奏&#xff0c;其核心在于将产品开发过程从一个不可预测的、时快时慢的混乱状态&#xff0c;转变为一套产出稳定、流程顺畅、步调可持续的系统化交付机制。要成功构建这套机制&#xff0c;实现有节奏的价值交付&#xff0c;必须综合运用五大关键策略&#…