第十五届全国大学生数学竞赛初赛试题(非数学专业类A卷)
文章目录
- 第十五届全国大学生数学竞赛初赛试题(非数学专业类A卷)
- 题目速览
- 逐题详解
题目速览
-
求极限:
limx→3x3+9−62−x3−23=.\lim\limits_{x \to 3} \frac{\sqrt{x^3 + 9} - 6}{2 - \sqrt{x^3 - 23}} = \rule{2cm}{0.7pt}.x→3lim2−x3−23x3+9−6=. -
设函数 z=f(x2−y2,xy)z = f(x^2 - y^2, xy)z=f(x2−y2,xy), 且 f(u,v)f(u, v)f(u,v) 具有连续的二阶偏导数, 则
∂2z∂x∂y=.\frac{\partial^2 z}{\partial x \partial y} = \rule{2cm}{0.7pt}.∂x∂y∂2z=. -
设 nnn 为正整数, f(x)=1x2−3x+2f(x) = \dfrac{1}{x^2 - 3x + 2}f(x)=x2−3x+21, 则:
f(n)(0)=.f^{(n)}(0) =\rule{2cm}{0.7pt}.f(n)(0)=. -
幂级数
∑n=1∞(−1)n−1n(2n−1)x2n\sum\limits_{n = 1}^{\infty} \frac{(-1)^{n - 1}}{n(2n - 1)} x^{2n}n=1∑∞n(2n−1)(−1)n−1x2n
的收敛域为 .\rule{2cm}{0.7pt}.. -
设曲面 Σ\SigmaΣ 是平面 y+z=5y + z = 5y+z=5 被柱面 x2+y2=25x^2 + y^2 = 25x2+y2=25 所截得的部分, 则曲面积分
∬Σ(x+y+z)dS=\iint\limits_{\Sigma} (x + y + z) \mathrm{d}S = \rule{2cm}{0.7pt}Σ∬(x+y+z)dS=
6.(x2+y2+3)dydx=2x(2y−x2y).(x^2 + y^2 + 3)\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left(2y - \frac{x^2}{y}\right).(x2+y2+3)dxdy=2x(2y−yx2).
-
设 Σ1\Sigma_1Σ1 是以 (0,4,0)(0, 4, 0)(0,4,0) 为顶点且与曲面 Σ2\Sigma_2Σ2: x23+y24+z23=1(y>0)\dfrac{x^2}{3} + \dfrac{y^2}{4} + \dfrac{z^2}{3} = 1 (y > 0)3x2+4y2+3z2=1(y>0) 相切的圆锥面, 求曲面 Σ1\Sigma_1Σ1 与 Σ2\Sigma_2Σ2 所围成的空间区域的体积.
-
设 a>1a > 1a>1, 求极限
limn→∞n∫1adx1+xn.\lim\limits_{n \to \infty} n \int_{1}^{a} \frac{\mathrm{d}x}{1 + x^n}.n→∞limn∫1a1+xndx. -
设 f(x)f(x)f(x) 在 [0,1][0, 1][0,1] 上有连续的导数, 且 f(0)=0f(0) = 0f(0)=0. 求证:
∫01f2(x)dx⩽4∫01(1−x)2[f′(x)]2dx,\int_{0}^{1} f^2(x) \mathrm{d}x \leqslant 4 \int_{0}^{1} (1 - x)^2 \left[ f'(x) \right]^2 \mathrm{d}x,∫01f2(x)dx⩽4∫01(1−x)2[f′(x)]2dx,
并求使得上式成为等式的 f(x)f(x)f(x). -
设数列{xn}\{x_n\}{xn} 满足 x0=13,xn+1=xn21−xn+xn2,n⩾0x_0 = \dfrac{1}{3}, x_{n + 1} = \dfrac{x_n^2}{1 - x_n + x_n^2}, n \geqslant 0x0=31,xn+1=1−xn+xn2xn2,n⩾0. 证明无穷级数
∑n=0∞xn\sum\limits_{n = 0}^{\infty} x_nn=0∑∞xn
收敛, 并求其和.
逐题详解
求极限:
limx→3x3+9−62−x3−23=.\lim\limits_{x \to 3} \frac{\sqrt{x^3 + 9} - 6}{2 - \sqrt{x^3 - 23}} = \rule{2cm}{0.7pt}.x→3lim2−x3−23x3+9−6=.
解
limx→3x3+9−62−x3−23=limx→3(x3+9−6)(x3+9+6)(2−x3−23)(2+x3−23)⋅limx→32+x3−23x3+9+6=limx→3x3+9−364−x3+23⋅limx→32+x3−23x3+9+6=−13\begin{align*} \lim\limits_{x \to 3} \frac{\sqrt{x^3 + 9} - 6}{2 - \sqrt{x^3 - 23}} &=\lim\limits_{x \to 3} \frac{\left(\sqrt{x^3 + 9} - 6\right)\left(\sqrt{x^3 + 9} + 6\right)}{\left(2 - \sqrt{x^3 - 23}\right)\left(2 + \sqrt{x^3 - 23}\right)} \cdot \lim\limits_{x \to 3} \frac{2 + \sqrt{x^3 - 23}}{\sqrt{x^3 + 9} + 6}\\ &=\lim\limits_{x \to 3} \frac{x^3 + 9- 36}{4 - x^3 + 23}\ \cdot \lim\limits_{x \to 3} \frac{2 + \sqrt{x^3 - 23}}{\sqrt{x^3 + 9} + 6}\\ &=-\frac{1}{3} \end{align*}x→3lim2−x3−23x3+9−6=x→3lim(2−x3−23)(2+x3−23)(x3+9−6)(x3+9+6)⋅x→3limx3+9+62+x3−23=x→3lim4−x3+23x3+9−36 ⋅x→3limx3+9+62+x3−23=−31
设函数 z=f(x2−y2,xy)z = f(x^2 - y^2, xy)z=f(x2−y2,xy), 且 f(u,v)f(u, v)f(u,v) 具有连续的二阶偏导数, 则
∂2z∂x∂y=.\frac{\partial^2 z}{\partial x \partial y} = \rule{2cm}{0.7pt}.∂x∂y∂2z=.
解
∂z∂x=fu⋅2x+fv⋅y∂2z∂x∂y=2x(fuu⋅(−2y)+fuv⋅x)+y(fuv⋅(−2y)+fvv⋅x)+fv=−4xyfuu+2(x2−y2)fuv+xyfvv+fv\begin{align*} \frac{\partial z}{\partial x}&=f_{u}\cdot 2x +f_{v}\cdot y\\ \frac{\partial^2 z}{\partial x\partial y}&=2x(f_{uu}\cdot (-2y)+f_{uv}\cdot x)+y(f_{uv} \cdot(-2y)+f_{vv}\cdot x)+f_v\\ &=-4xyf_{uu}+2(x^2-y^2)f_{uv}+xyf_{vv}+f_{v} \end{align*} ∂x∂z∂x∂y∂2z=fu⋅2x+fv⋅y=2x(fuu⋅(−2y)+fuv⋅x)+y(fuv⋅(−2y)+fvv⋅x)+fv=−4xyfuu+2(x2−y2)fuv+xyfvv+fv
设 nnn 为正整数, f(x)=1x2−3x+2f(x) = \dfrac{1}{x^2 - 3x + 2}f(x)=x2−3x+21, 则 :
f(n)(0)=.f^{(n)}(0) =\rule{2cm}{0.7pt}.f(n)(0)=.
解
将f(x)=1x2−3x+2f(x) = \dfrac{1}{x^2 - 3x + 2}f(x)=x2−3x+21变为:(x2−3x+2)f(x)=1(x^2-3x+2)f(x)=1(x2−3x+2)f(x)=1两边同时求导:
((x2−3x+2)f(x))(n)=0⇒2f(n)−3nf(n−1)+n(n−1)f(n−2)=0\begin{align*} \left((x^2-3x+2)f(x)\right)^{(n)}&=0\\ \Rightarrow 2{f}^{(n)}-3nf^{(n-1)}+n(n-1)f^{(n-2)}&=0 \end{align*} ((x2−3x+2)f(x))(n)⇒2f(n)−3nf(n−1)+n(n−1)f(n−2)=0=0
取bn=f(n)n!b_n=\dfrac{f^{(n)}}{n!}bn=n!f(n)得到方程:
2bn−3bn−1+bn−2=02b_n-3b_{n-1}+b_{n-2}=0 2bn−3bn−1+bn−2=0
同时有初值条件:b0=12b_0=\dfrac{1}{2}b0=21与b1=34b_1=\dfrac{3}{4}b1=43
解差分方程得到:
bn=1−12n+1b_n=1-\frac{1}{2^{n+1}}bn=1−2n+11
故:
fn(0)=n!(1−12n+1)f^{n}(0)=n!\left(1-\frac{1}{2^{n+1}}\right)fn(0)=n!(1−2n+11)
幂级数
∑n=1∞(−1)n−1n(2n−1)x2n\sum\limits_{n = 1}^{\infty} \frac{(-1)^{n - 1}}{n(2n - 1)} x^{2n}n=1∑∞n(2n−1)(−1)n−1x2n
的收敛域为 .\rule{2cm}{0.7pt}..
解
L=limn→∞∣an+1an∣=limn→∞∣(−1)n(n+1)(2n+1)⋅n(2n−1)(−1)n−1∣=limn→∞n(2n−1)(n+1)(2n+1)=1.\begin{align*} L &= \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^n}{(n+1)(2n+1)} \cdot \frac{n(2n-1)}{(-1)^{n-1}} \right| \\&= \lim_{n \to \infty} \frac{n(2n-1)}{(n+1)(2n+1)} = 1. \end{align*}L=n→∞limanan+1=n→∞lim(n+1)(2n+1)(−1)n⋅(−1)n−1n(2n−1)=n→∞lim(n+1)(2n+1)n(2n−1)=1.
故,x∈(−1,1)x\in(-1,1)x∈(−1,1),取x=±1x=\pm 1x=±1.得到数项级数:
∑n=0+∞(−1)nn(2n−1)\sum_{n=0}^{+\infty}\frac{(-1)^n}{n(2n-1)}n=0∑+∞n(2n−1)(−1)n
显然绝对收敛。
因此:x∈[−1,1]x\in [-1,1]x∈[−1,1]
设曲面 Σ\SigmaΣ 是平面 y+z=5y + z = 5y+z=5 被柱面 x2+y2=25x^2 + y^2 = 25x2+y2=25 所截得的部分, 则曲面积分
∬Σ(x+y+z)dS=\iint\limits_{\Sigma} (x + y + z) \mathrm{d}S = \rule{2cm}{0.7pt}Σ∬(x+y+z)dS=
解
∬Σ(x+y+z)dS=2∬ΣxOy:x2+y2≤25(x+5)dxdy=52∬ΣxOy:x2+y2≤25dxdy=1252π\begin{align*} \iint_{\Sigma}(x+y+z)\mathrm{d}S&=\sqrt{2}\iint_{\Sigma_{xOy}:x^2+y^2\leq 25}(x+5)\mathrm{d}x\mathrm{d}y\\ &=5\sqrt{2}\iint_{\Sigma_{xOy}:x^2+y^2\leq 25}\mathrm{d}x\mathrm{d}y\\ &=125\sqrt{2}\pi \end{align*} ∬Σ(x+y+z)dS=2∬ΣxOy:x2+y2≤25(x+5)dxdy=52∬ΣxOy:x2+y2≤25dxdy=1252π
解微分方程:
(x2+y2+3)dydx=2x(2y−x2y).(x^2 + y^2 + 3)\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left(2y - \frac{x^2}{y}\right).(x2+y2+3)dxdy=2x(2y−yx2).
解
做换元:{z=y2+1x2+2P=x2+2\begin{cases} z=\dfrac{y^2+1}{x^2+2}\\ P=x^2+2 \end{cases}⎩⎨⎧z=x2+2y2+1P=x2+2
(x2+y2+3)dydx=2x(2y−x2y)⇒PdzdP=−z2−3z+2z+1⇒(z−2)3(z−1)2=−CP⇒(2x2−y+2+3)3=C(x2−y2+1)2\begin{align*} (x^2 + y^2 + 3)\frac{\mathrm{d}y}{\mathrm{d}x} &= 2x\left(2y - \frac{x^2}{y}\right)\\ \Rightarrow P\dfrac{\mathrm{d}z}{\mathrm{d}P}&=-\frac{z^2-3z+2}{z+1}\\ \Rightarrow \dfrac{(z-2)^3}{(z-1)^2} &=-\frac{C}{P} \\ \Rightarrow (2x^2-y+2+3)^3&=C(x^2-y^2+1)^2 \end{align*}(x2+y2+3)dxdy⇒PdPdz⇒(z−1)2(z−2)3⇒(2x2−y+2+3)3=2x(2y−yx2)=−z+1z2−3z+2=−PC=C(x2−y2+1)2
设 Σ1\Sigma_1Σ1 是以 (0,4,0)(0, 4, 0)(0,4,0) 为顶点且与曲面 Σ2\Sigma_2Σ2: x23+y24+z23=1(y>0)\dfrac{x^2}{3} + \dfrac{y^2}{4} + \dfrac{z^2}{3} = 1 (y > 0)3x2+4y2+3z2=1(y>0) 相切的圆锥面, 求曲面 Σ1\Sigma_1Σ1 与 Σ2\Sigma_2Σ2 所围成的空间区域的体积.
解
容易得到圆锥面方程:Σ1:4(x2+z2)=(y−4)2\Sigma_1:4(x^2+z^2)=(y-4)^2Σ1:4(x2+z2)=(y−4)2
V=∬x2+z2≤94[(4−2x2+z2)−21−13(x2+z2)]dxdz=4π⋅94−2∫02π∫032r2dr−2∫02π∫0321−r23rdr=9π−4π∫032r2dr−4π∫0321−r23rdr=9π−9π2−7π2=π\begin{align*} V&=\iint\limits_{x^2+z^2\leq \frac{9}{4}}\left[(4-2\sqrt{x^2+z^2})-2\sqrt{1-\frac{1}{3}(x^2+z^2)}\right]\mathrm{d}x\mathrm{d}z \\ &= 4\pi \cdot \frac{9}{4} - 2\int_{0}^{2\pi} \int_{0}^{\frac{3}{2}} r^2 \mathrm{d}r - 2\int_{0}^{2\pi} \int_{0}^{\frac{3}{2}} \sqrt{1 - \frac{r^2}{3}} r \mathrm{d}r \\ &= 9\pi - 4\pi \int_{0}^{\frac{3}{2}} r^2 \mathrm{d}r - 4\pi \int_{0}^{\frac{3}{2}} \sqrt{1 - \frac{r^2}{3}} r \mathrm{d}r \\ &= 9\pi - \frac{9\pi}{2} - \frac{7\pi}{2} \\ &= \pi \end{align*}V=x2+z2≤49∬[(4−2x2+z2)−21−31(x2+z2)]dxdz=4π⋅49−2∫02π∫023r2dr−2∫02π∫0231−3r2rdr=9π−4π∫023r2dr−4π∫0231−3r2rdr=9π−29π−27π=π
设 a>1a > 1a>1, 求极限
limn→∞n∫1adx1+xn.\lim\limits_{n \to \infty} n \int_{1}^{a} \frac{\mathrm{d}x}{1 + x^n}.n→∞limn∫1a1+xndx.
解
Changing xxxto 1/x1/x1/xgives
In:=n∫1adx1+xn=n∫b1xn−21+xndx,I_n := n \int_{1}^{a} \frac{dx}{1 + x^n} = n \int_{b}^{1} \frac{x^{n - 2}}{1 + x^n} dx, In:=n∫1a1+xndx=n∫b11+xnxn−2dx,
where b=1a∈(0,1)b = \frac{1}{a} \in (0, 1)b=a1∈(0,1). Now, use integration by parts with 1x=u\frac{1}{x} = ux1=u and nxn−11+xndx=dv\frac{nx^{n - 1}}{1 + x^n} dx = dv1+xnnxn−1dx=dv. Then du=−dxx2du = -\frac{dx}{x^2}du=−x2dx and v=ln(1+xn)v = \ln(1 + x^n)v=ln(1+xn) and so
In=ln2−ln(1+bn)b+∫b1ln(1+xn)x2dx.I_n = \ln 2 - \frac{\ln(1 + b^n)}{b} + \int_{b}^{1} \frac{\ln(1 + x^n)}{x^2} dx. In=ln2−bln(1+bn)+∫b1x2ln(1+xn)dx.
Since b∈(0,1)b \in (0, 1)b∈(0,1), we have limn→∞bn=0\lim\limits_{n \to \infty} b^n = 0n→∞limbn=0 and so
limn→∞In=ln2+limn→∞∫b1ln(1+xn)x2dx.(*)\lim_{n \to \infty} I_n = \ln 2 + \lim\limits_{n \to \infty} \int_{b}^{1} \frac{\ln(1 + x^n)}{x^2} dx. \tag{*} n→∞limIn=ln2+n→∞lim∫b1x2ln(1+xn)dx.(*)
Since $\ln(1 + t) \leq t, \ t > -1 $, we have 0≤ln(1+xn)x2≤xn−20 \leq \frac{\ln(1 + x^n)}{x^2} \leq x^{n - 2}0≤x2ln(1+xn)≤xn−2 and hence 0≤∫b1ln(1+xn)x2dx≤1−bn−1n−10 \leq \int_{b}^{1} \frac{\ln(1 + x^n)}{x^2} dx \leq \frac{1 - b^{n - 1}}{n - 1}0≤∫b1x2ln(1+xn)dx≤n−11−bn−1 implying that limn→∞∫b1ln(1+xn)x2dx=0\lim\limits_{n \to \infty} \int_{b}^{1} \frac{\ln(1 + x^n)}{x^2} dx = 0n→∞lim∫b1x2ln(1+xn)dx=0, by the squeeze theorem. Thus, by (*), $\lim\limits_{n \to \infty} I_n = \ln 2 $.
Now, as an exercise, try to prove or disprove this claim: for any b∈(−1,1)b \in (-1, 1)b∈(−1,1):
limn→∞n∫b1dx1+xn=ln2.\lim\limits_{n \to \infty} n \int_{b}^{1} \frac{dx}{1 + x^n} = \ln 2.n→∞limn∫b11+xndx=ln2.
设 f(x)f(x)f(x) 在 [0,1][0, 1][0,1] 上有连续的导数, 且 f(0)=0f(0) = 0f(0)=0. 求证:
∫01f2(x)dx⩽4∫01(1−x)2[f′(x)]2dx,\int_{0}^{1} f^2(x) \mathrm{d}x \leqslant 4 \int_{0}^{1} (1 - x)^2 \left[ f'(x) \right]^2 \mathrm{d}x,∫01f2(x)dx⩽4∫01(1−x)2[f′(x)]2dx,
并求使得上式成为等式的 f(x)f(x)f(x).
解
∫01f2(x)dx=∫01(1−x)f′(x)⋅f(x)dx⩽(∫01(1−x)2(f′(x))2dx)12(∫01f2(x)dx)12⩽4∫01(1−x)2[f′(x)]2dx\begin{align*} \int_{0}^{1} f^2(x) \mathrm{d}x &= \int_{0}^{1} (1 - x) f'(x) \cdot f(x) \,\mathrm{d}x\\& \leqslant \left( \int_{0}^{1} (1 - x)^2 (f'(x))^2 \,\mathrm{d}x \right)^{\frac{1}{2}} \left( \int_{0}^{1} f^2(x) \,\mathrm{d}x \right)^{\frac{1}{2}}\\&\leqslant 4 \int_{0}^{1} (1 - x)^2 [f'(x)]^2 \,\mathrm{d}x \end{align*}∫01f2(x)dx=∫01(1−x)f′(x)⋅f(x)dx⩽(∫01(1−x)2(f′(x))2dx)21(∫01f2(x)dx)21⩽4∫01(1−x)2[f′(x)]2dx
当且仅当cf(x)=(1−x)f′(x)cf(x)=(1-x)f^{\prime}(x)cf(x)=(1−x)f′(x)时,可以取等,此时:
f(x)=0f(x)=0f(x)=0
设数列{xn}\{x_n\}{xn} 满足 x0=13,xn+1=xn21−xn+xn2,n⩾0x_0 = \dfrac{1}{3}, x_{n + 1} = \dfrac{x_n^2}{1 - x_n + x_n^2}, n \geqslant 0x0=31,xn+1=1−xn+xn2xn2,n⩾0. 证明无穷级数
∑n=0∞xn\sum\limits_{n = 0}^{\infty} x_nn=0∑∞xn
收敛, 并求其和.
解
xn+1=xn21−xn+xn2⇒xn=xn1−xn−xn+11−xn+1\begin{align*} x_{n + 1} &= \dfrac{x_n^2}{1 - x_n + x_n^2}\\ \Rightarrow x_n&=\frac{x_n}{1-x_n}-\frac{x_{n+1}}{1-x_{n+1}} \end{align*}xn+1⇒xn=1−xn+xn2xn2=1−xnxn−1−xn+1xn+1
那么:
∑n=0∞xn=∑n=0∞(xn1−xn−xn+11−xn+1)=x01−x0=12\begin{align*} \sum\limits_{n = 0}^{\infty} x_n&=\sum\limits_{n = 0}^{\infty} \left(\frac{x_n}{1-x_n}-\frac{x_{n+1}}{1-x_{n+1}}\right)\\ &=\frac{x_0}{1-x_0}=\frac{1}{2} \end{align*}n=0∑∞xn=n=0∑∞(1−xnxn−1−xn+1xn+1)=1−x0x0=21